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1. INTRODUCTION 
This report contains a collection of iTOUGH2 sample problems. It complements the 
iTOUGH2 User's Guide [Finsterle, 2007], and the iTOUGH2 Command Reference 
[Finsterle, 2016] 
iTOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty 
propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase 
flow in fractured and porous media [Pruess, 1987, 1991a]. The report iTOUGH2 User's 
Guide [Finsterle, 2007] describes the inverse modeling framework and provides the 
theoretical background. The report iTOUGH2 Command Reference [Finsterle, 2016] 
contains the syntax of most iTOUGH2 commands (see also http://eesa.lbl.gov/iTOUGH2, 
click on Command Index). This report describes a variety of sample problems solved by 
iTOUGH2. 
Table 1.1 contains a short description of the seven sample problems discussed in this 
report. The TOUGH2 equation-of-state (EOS) module that needs to be linked to iTOUGH2 
is also indicated. Each sample problem focuses on a few selected issues, as shown in 
Table 1.2. iTOUGH2 input features and the usage of program options are described. 
Furthermore, interpretations of selected inverse modeling results are given. Problem 1 is a 
multipart tutorial, describing basic iTOUGH2 input files for the main iTOUGH2 application 
modes; no interpretation of results is given. Problem 2 focuses on non-uniqueness, residual 
analysis, and correlation structure. Problem 3 illustrates a variety of parameter and 
observation types, and describes parameter selection strategies. Problem 4 compares the 
performance of minimization algorithms and discusses model identification. Problem 5 
explains how to set up a combined inversion of steady-state and transient data. Problem 6 
provides a detailed residual and error analysis. Finally, Problem 7 illustrates how the 
estimation of model-related parameters may help compensate for errors in that model. 
 
Table 1.1. Summary of Sample Problems 

# EOS Description 

1 3 Tutorial; introduction to main iTOUGH2 applications 
2 3 Analysis of data from laboratory gas-pressure-pulse-decay experiment;  

parameter correlation, non-uniqueness, systematic errors 
3 1 Calibration of geothermal reservoir model; automatic parameter selection 
4 9 Analysis of multi-step radial desaturation experiment; step changes in 

boundary conditions; minimization algorithm 
5 3 Pneumatic pressures; user-specified boundary conditions; matching 

transient data after steady-state equilibrium calculation 
6 4 Ventilation experiment; error analysis 
7 9 Examines numerical diffusion by comparison to analytical solution 
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Table 1.2. Summary of Issues Addressed by Sample Problems 

# Part CPU time@ Application/iTOUGH2 features 

1 1 1 sec Solves forward problem using iTOUGH2 
 2 1 sec Generates time series plots 
 3 1 sec Sensitivity analysis 
 4 1 sec Parameter estimation 
 5 1 sec FOSM uncertainty propagation analysis 
 6 5 sec Monte Carlo simulations 

2 1 2 sec Non-uniqueness 
 2 2 sec Resolve non-uniqueness by adding observations 
 3 3 sec Parameterization of systematic errors 

3 1 15 sec Automatic parameter selection 
 2 5 sec FOSM uncertainty propagation analysis 

4 1 1 sec Gauss-Newton 
 2 1 sec Levenberg-Marquardt 
 3 5 sec Simplex 
 4 1 min Simulated Annealing 
 5 20 sec Grid Search 

5 - 1 min Matching transient data after steady-state simulation 

6 - 30 sec Inversion; check of linearity assumption 

7 -  1 sec User-specified data function 
@ Approximate CPU time. 
 
All input and data files needed to run the sample problems are part of the iTOUGH2 
distribution package. The TOUGH2 and iTOUGH2 input file names are sam# and sam#i, 
respectively, where # stands for the problem number. Multipart problems have file names 
of the form sam#p%i, where # is the problem number and % is the part number. Data files 
are identified by a “.dat” file extension. 
The key to a successful application of iTOUGH2 is (1) a good understanding of multiphase 
flow processes, (2) the ability to conceptualize the given flow and transport problem and to 
develop a corresponding TOUGH2 model, (3) detailed knowledge about the data used for 
calibration, (4) an understanding of parameter estimation theory and the correct 
interpretation of inverse modeling results, and (5) proficiency in using iTOUGH2 options. 
This report addresses issues (4) and (5). 
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2. PROBLEM 1: SENSITIVITY ANALYSIS, PARAMETER  
 ESTIMATION, AND UNCERTAINTY ANALYSIS 
 
2.1 Introduction 
 
The purpose of Problem 1 is to develop a sequence of simulations that demonstrate the 
three key applications of iTOUGH2, namely (1) sensitivity analysis for experimental design, 
(2) parameter estimation by data inversion, and (3) uncertainty propagation analysis. We 
focus here on a step-by-step description of the development of iTOUGH2 input files rather 
than on the interpretation of the inverse modeling results. 
A synthetic laboratory experiment is chosen for simplicity. A schematic of the experi-
mental layout is shown in Figure 2.1.1. Water is injected at constant pressure into a one-
dimensional, horizontal column filled with uniform, partially saturated sand. This setup is 
similar to the one used for a standard steady-state Darcy experiment. However, there is a 
certain amount of free gas initially present in the column, and information about the 
transient behavior of pressures and flow rates are used to determine two-phase flow 
parameters. 
The corresponding TOUGH2 input file is shown in Figure 2.1.2. 
 

 
 
Figure 2.1.1. Schematic of synthetic laboratory experiment. 
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 sam1: TOUGH2 input file for simulating two-phase, transient “Darcy” experiment 
 ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 SAND     1     2650.     .3500 2.000E-12                          2.51      920. 
  1.000E-08 
 BOUND    0     2650.     .9900 2.000E-12                          2.51   100000.  
 
 RPCAP----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
     3      0.200E+00 0.050E+00 
     1      0.000E+00 0.000E+00 1.000E+00 
 PARAM----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
    2 500    9999100000100000000400003000 
  0.000E+00 6.000E+02 2.500E+00 1.000E+01 
 
  100000.000000000000 10.30000000000000  20.000000000000000 
 TIMES----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
    1    9                60.0 
      60.0 
 MULTI----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
     2    2    2    6 
 ELEME----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 IN             BOUND .1000E+50                     .0000E+00 
 A11 1   49    1SAND  .1000E-03 
 OUT            BOUND .1000E+50                     .5000E+00 
 
 CONNE----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 IN  0A11 1                   1 .1000E-10 .5000E-02 .1000E-01 
 A11 1A11 2   48    1    1    1 .5000E-02 .5000E-02 .1000E-01 
 A1150OUT 0                   1 .5000E-02 .1000E-10 .1000E-01 
 
 START----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 INCON----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 IN 
  110000.000000000000 0.00000000000000000  20.000000000000000 
 OUT 
  100000.000000000000 0.00000000000000000  20.000000000000000 
 
 ENDCY----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 
Figure 2.1.2. TOUGH2 input file sam1. 
 
We assume that the objective of the experiment is to estimate the permeability and the 
porosity of the sand as well as the initial gas saturation. Furthermore, we presume that only 
one flow meter and one pressure transducer are available for data collection. The 
measurement uncertainties of the two instruments are 5 ml/min and 200 Pa, respectively.  
Step-by-step instructions will be given for this sample problem. In the first two parts 
(Section 2.2), we use iTOUGH2 to simply solve the forward problem, producing a plot file, 
and at the same time generating the synthetic database for the subsequent inversions. In 
Part 3 (Section 2.3), a sensitivity analysis is performed to determine the optimum location 
of the flow meter and pressure transducer. This demonstrates how iTOUGH2 can be used 
for experimental design. The estimation of the three parameters of interest based on 
synthetic flow rate and pressure data is discussed in Part 4 (Section 2.4). Finally, in 
Section 2.5, we compare the uncertainty of the model predictions by using linear 
uncertainty propagation analysis (Part 5) and Monte Carlo simulations (Part 6).  
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2.2 Solving the Forward Problem with iTOUGH2 
 
It is very important for any inverse modeling effort to solve the forward problem in a 
stable, robust, and efficient manner. A standard TOUGH2 forward run should always be 
performed to check the appropriateness of the simulation before more time-consuming 
inversions are initiated. Plotting the simulation results obtained with the initial parameter 
set against the data is also strongly recommended because frequent errors such as wrong 
conversion factors, opposite signs of measured and calculated flow rates, time lags and data 
shifts, etc. can readily be detected. Furthermore, it provides a first assessment of the model, 
and allows one to estimate the CPU-time required for solving the inverse problem. 
A single TOUGH2 simulation can be performed by typing the following command (on Unix 
systems): 
 
tough2 sam1 3 & 
 
This command makes use of the Unix script file tough2, which automatically takes file 
~/itough2/invdir as a dummy iTOUGH2 input file. If using this approach, potential error 
messages are printed to file t2.msg.  
On a PC, use either the batch file tough2.bat (or itough2.bat), or start the iTOUGH2 
executable itough2.exe) in the working directory. You will be prompted to enter the names 
of the iTOUGH2 and TOUGH2 input files; provide file invdir (or any dummy file, which 
may be empty) as the iTOUGH2 input file, file sam1 as the TOUGH2 input file, and the 
number of the EOS module (here: 3). In the remainder of this manual, only the Unix 
command is given. 
An alternative way to using file invdir is to write a short iTOUGH2 input file (sam1p1i) as 
shown in Figure 2.2.1. 
 
 
 > COMPUTATION 
   >> OPTION 
      >>> solve FORWARD problem only 
      <<< 
   << 
 < 
 

Figure 2.2.1. iTOUGH2 input file sam1p1i used to solve direct problem. 
 
 
The following command must be used to solve all parts of Problem 1: 
 
itough2 sam1p#i sam1 3 & 
 
where “#” is the part number. 
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Since no parameters or observations are provided, the iTOUGH2 output file sam1p1i.out 
contains warning messages that can be ignored in this specific case. In general, however, 
one should always consult the following files to check for potential errors: 
 
(1) the iTOUGH2 output file (e.g., sam1p1i.out) 
(2) the TOUGH2 output file (e.g., sam1.out) 
(3) the iTOUGH2 message file (e.g., sam1p1i.msg) 
 
In Part 2, we use iTOUGH2 to generate a time plot of pressure and flow rates at two 
selected points within the column. The plotfile will later be used as the synthetic datafile 
for the inversion.  
iTOUGH2 provides convenient options in block > OBSERVATIONS to pick points in 
space and time at which the value of selected TOUGH2 output variables can be examined. 
Here, we are interested in the pressures [Pa] in the center of the column, and the flow rates 
[ml/min] at the inlet. Sixty equally spaced points in time between 10 and 600 seconds are 
selected to generate the time series. Columns of time versus calculated flow rates and 
pressures are written to file sam1p2i.col, which can be processed by most visualization 
packages for plotting. The corresponding iTOUGH2 input file is shown in Figure 2.2.2. 
The pressure is observed at the center of the column, identified by the corresponding 
gridblock name (note that blanks in a gridblock name must be replaced by underscores). 
For flow rates, the two gridblock names defining the connection at the inlet are specified. 
Since no measured data are available, command >>>> NO DATA is added, which 
automatically generates dummy data points of value 10-50. A multiplication factor 
of -1.6667E-5 is specified, converting positive flow rates in units of [ml/min] to the flow 
rates calculated by TOUGH2, which are negative and in [kg/sec]. Note that the sign of the 
calculated flow rates is the result of a convention, i.e., it is arbitrarily defined by the 
ordering of elements in a connection. This convention has to be accounted for by choosing 
the correct sign of the conversion factor. 
By default, the format of the plotfile concurs with the TECPLOT visualization software. In 
order to arrange the plotfile in columns, command >>> FORMAT: COLUMN is used. 
The first column in file sam1p2i.col (see Figure 2.2.3) holds the selected times in the 
chosen time units; the second column contains the TOUGH2 output for the first data set 
(e.g., pressures at element A1125); the third column contains the calculated system 
response for the second data set (e.g., liquid flow rate across interface IN__0 A11_1), and 
so on. If measurements are available, additional columns will be generated with the 
observed data. (File sam1p2i.col  will be used in Part 4 as the file from which the synthetic 
data are extracted.) 
This simulation produces a relatively large TOUGH2 output file sam1.out even for this 
small problem, because full results are printed at 60 printout times. Specifying a negative 
number for parameter KDATA in TOUGH2 block PARAM.1 suppresses the printout of state 
variables in the TOUGH2 output file, saving disk space and making the run slightly faster. 
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 > OBSERVATION 
 
   >> select: 60 EQUALLY spaced points in TIME (print MANUAL page) 
      10.0 600.0 seconds 
 
   >> PRESSURE 
      >>> ELEMENT         : A1125 
          >>>> NO DATA needed 
          <<<< 
      <<< 
 
   >> LIQUID FLOW RATE 
      >>> CONNECTION      : IN__0  A11_1 
          >>>> FACTOR     :-1.666667E-05 (ml/min - kg/sec) 
          >>>> NO DATA needed 
          <<<< 
       <<< 
   << 
 
 > COMPUTATION 
 
   >> OPTION 
      >>> solve FORWARD problem only 
      <<< 
 
   >> OUTPUT 
      >>> LIST all available plot file FORMATS and select: COLUMNS 
      >>> output in MINUTES 
      >>> perform BENCHMARK calculation 
      >>> print VERSION control statements 
      >>> print command INDEX to file sam1p2i.out 
      <<< 
   << 
 < 
 

Figure 2.2.2. iTOUGH2 input file sam1p2i. Solves forward problem and generates column 
file sam1p2i.col with flow rates and pressures as a function of time. 
 
         
        TIME             SIM0             SIM0 
        [min]         P(GAS) A1125  F-L IN  0 A11 1 
    .16666667E+00    .10302017E+06    .85780174E+02 
    .33333333E+00    .10351308E+06    .65323231E+02 
    .50000000E+00    .10353113E+06    .57637722E+02 
    .66666667E+00    .10340909E+06    .53653780E+02 
    .83333333E+00    .10325474E+06    .50982470E+02 
    .10000000E+01    .10310265E+06    .48876966E+02 
    .11666667E+01    .10296287E+06    .47075537E+02 
    .............    .............    ............. 
    .10000000E+02    .10491346E+06    .21109160E+02 

 
Figure 2.2.3. Excerpt from iTOUGH2 plot file sam1p2i.col. Time is in the first column, 
followed by the simulated state variables for each data set. This file will be used as the data 
file in Part 4. 
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2.3 Sensitivity Analysis 
 
Part 3 demonstrates how iTOUGH2 is used to perform a sensitivity analysis. By calculating 
global sensitivity measures for each parameter and each observation type, alternative 
experimental configurations can be compared to each other, and the design most suitable 
for estimating parameters in a subsequent inversion can be identified. As in any sensitivity 
analyses involving non-linear processes, prior knowledge about the parameters must be 
available, or the analysis has to be repeated for different parameter combinations. 
Furthermore, the parameters of interest and their potential variations must be specified, as 
well as the type, location, and expected uncertainty of the measurements. Since the experi-
ment has to be optimized with respect to the estimation of permeability, porosity, and 
initial gas saturation, these three parameters and their respective variations are defined in 
the > PARAMETER block of the iTOUGH2 input file (Figure 2.3.1). 
Since the permeability of the column and the adjacent boundary gridblocks are considered 
a single parameter to be varied, both material names, i.e., SAND and BOUND, are 
specified on the same line. Note that the initial gas saturation is referred to as primary 
variable No. 2 of the TOUGH2 block PARAM.4, which holds the default initial conditions. 
Potential parameter variations are specified, scaling the sensitivity coefficients of the 
Jacobian matrix. For permeability, the variation of the logarithm is given rather than 
permeability itself. No parameter annotation is provided for porosity, prompting iTOUGH2 
to automatically generate an identifier. 
In the > OBSERVATION block, pressures in elements A1112, A1125, and A1138 are 
examined. The element names correspond to three potential measuring locations within the 
column, at a distance of 1/4, 1/2, and 3/4 of the total column length from the inlet, respec-
tively. Furthermore, the connections defining the inlet and the outlet are given as the two 
alternative points for flow rate measurements. 
The program option >>> SENSITIVITY ANALYSIS is invoked, which makes 
iTOUGH2 run 41 =+n  TOUGH2 simulations to calculate the Jacobian matrix, where n  is 
the number of parameters. Note that option >>> FORWARD used in file sam1p2i 
(Figure 2.2.2) must be disabled. This can be done by (1) deleting the corresponding line, 
(2) replacing the command level indicator “>>>” by blanks (or any other character), (3) 
surrounding the line with “/*” and “*/” comment characters, or (4) adding a comment 
character (“#”) in the first column. 
The Jacobian matrix and the covariance matrix of the parameters provide the basis for a 
detailed sensitivity analysis. We notice from the global sensitivity measures shown in 
Figure 2.3.2 that the highest sensitivity is realized for the pressure measurements in the 
center of the column, and that the flow rate data at the inlet contain significantly more 
information than the flow rate data at the outlet, suggesting implementation of the 
experimental configuration shown in Figure 2.1.1. 
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 > PARAMETER 
 
   >> ABSOLUTE permeability 
      >>> MATERIAL        : SAND_ BOUND 
          >>>> ANNOTATION : log(abs. perm.) 
          >>>> LOGARITHM 
          >>>> VARIATION  : 0.3 
          <<<< 
       <<< 
 
   >> POROSITY 
      >>> MATERIAL        : SAND_ 
          >>>> VALUE 
          >>>> VARIATION  : 0.10 
          <<<< 
      <<< 
 
   >> INITIAL condition for primary variable No.: 2 
      >>> DEFAULT 
          >>>> ANNOTATION : Gas entrapped 
          >>>> VALUE 
          >>>> VARIATION  : 0.10 
          <<<< 
      <<< 
   << 
 
 > OBSERVATION 
 
   >> select : 60 points in TIME, EQUALLY spaced between 
      10.0 600.0 seconds 
 
   >> PRESSURE 
 
      >>> ELEMENT         : A1112 
          >>>> ANNOTATION : Pressure 1/4 
          >>>> NO DATA available 
          >>>> DEVIATION  : 200.0 Pa  (expected measurement error) 
          <<<< 
 
      >>> ELEMENT         : A1125 
          >>>> ANNOTATION : Pressure 1/2 
          >>>> NO DATA available 
          >>>> DEVIATION  : 200.0 Pa 
          <<<< 
  
      >>> ELEMENT         : A1138 
          >>>> ANNOTATION : Pressure 3/4 
          >>>> NO DATA available 
          >>>> DEVIATION  : 200.0 Pa 
          <<<< 
      <<< 

 
Figure 2.3.1. iTOUGH2 input file sam1p3i used to perform sensitivity analysis of 5 
observations with respect to 3 parameters. 
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   >> LIQUID FLOW RATE 
      >>> CONNECTION      : IN__0  A11_1 
          >>>> ANNOTATION : Flow inlet 
          >>>> FACTOR     :-1.666667E-05 (ml/min - kg/sec) 
          >>>> NO DATA available 
          >>>> DEVIATION  : 5.0 ml/min  (expected measurement error) 
          <<<< 
      >>> CONNECTION      : A1150  OUT_0 
          >>>> ANNOTATION : Flow outlet 
          >>>> FACTOR     :-1.666667E-05 (ml/min - kg/sec) 
          >>>> NO DATA available 
          >>>> DEVIATION  : 5.0 ml/min 
          <<<< 
      <<< 
   << 
 
 
 > COMPUTATION 
   >> OPTION 
      ... solve FORWARD problem only 
      >>> perform SENSITIVITY analysis 
      <<< 
 
   >> OUTPUT 
      >>> PLOTFILE contains : COLUMNS 
      <<< 
   << 
 < 

 
Figure 2.3.1 (cont.). iTOUGH2 input file sam1p3i used to perform sensitivity analysis of 5 
observations with respect to 3 parameters. 
 
 
  
 ================================================================================== 
                             log(abs. perm.)  POROSITY SAND  Gas entrapped    Total 
 ---------------------------------------------------------------------------------- 
 Total from data  Pressure 1/4         274.9          113.3          262.4    650.5 
 Total from data  Pressure 1/2         440.1          180.9          370.1    991.0 ! 
 Total from data  Pressure 3/4         289.3          116.9          255.8    662.1 
 Total from data  Flow inlet           168.2           41.5          119.6    329.4 ! 
 Total from data  Flow outlet            9.2            2.4           30.5     42.2 
 ---------------------------------------------------------------------------------- 
 Total parameter sensitivity          1181.7          455.0         1038.4 
 ================================================================================== 
 
Figure 2.3.2. Excerpt from iTOUGH2 output file sam1p3i.out, showing global sensitivity 
measures. 
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2.4 Parameter Estimation 
 
Part 4 demonstrates the main application of iTOUGH2, i.e., the estimation of TOUGH2 input 
parameters by automatically calibrating the model against discrete observations in space 
and time. We concluded from the sensitivity analysis discussed in Section 2.3 that it is most 
advantageous to use pressure data measured at the center of the column and flow rate data 
at the inlet to estimate the three parameters of interest. In this synthetic experiment, the data 
were not actually measured, but rather obtained by running a forward simulation (see 
Part 2). The second and third columns in file sam1p2i.col contain the pressure and flow rate 
data, respectively, as a function of time (which is stored in Column 1). 
While the true parameters )30.10,35.0,7.11(−=T

truep  are given by the TOUGH2 input file 
sam1 used to generate the data, we pretend not to know their values. An initial guess 

)20.10,25.0,0.12(0 −=Tp  is provided for each parameter through the iTOUGH2 input file 
sam1p4i (see Figure 2.4.1). Starting from this initial parameter set, correct identification of 
the true parameter set may serve as a verification of the iTOUGH2 minimization algorithm. 
An admissible range is specified for the third parameter in order to prevent iTOUGH2 from 
suggesting values that lead to an error in the TOUGH2 simulation. The third parameter 
represents initial gas saturation with physical values in the interval 10 ≤≤ giS ; however, 
the admissible range for the corresponding TOUGH2 input parameter is 

0.11)2(0.10 << DEP . 
The simulation results are compared at 60 points in time to the data provided on file 
sam1p2i.col. Data could also be directly supplied through the iTOUGH2 input file sam1p4i. 
If reading from an external file, keyword FILE must be present, and the file name and 
time units have to be given on the >>>> DATA command line. The data file sam1p2i.col 
(see Figure 2.2.3) contains two header lines that have to be skipped before actual data can 
be read (command >>>> HEADER). Furthermore, the columns holding the times (default: 
Column 1) and observed values (default: Column 2) are specified using command 
>>>> COLUMN. 
In the > COMPUTATION block, the number of iTOUGH2 iterations is being limited to 5. 
The input file generates 3 warning messages, which can be ignored.  
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 > PARAMETER 
 
   >> ABSOLUTE permeability 
      >>> MATERIAL              : SAND_ BOUND 
          >>>> ANNOTATION       : log(abs. perm.) 
          >>>> LOGARITHM 
          >>>> initial GUESS    : -12.0 
          >>>> VARIATION        : 0.3 
          <<<< 
       <<< 
  
   >> POROSITY 
      >>> MATERIAL              : SAND_ 
          >>>> initial GUESS    : 0.25 
          >>>> VARIATION        : 0.10 
          <<<< 
      <<< 
 
   >> INITIAL condition for primary variable No.:2 
      >>> DEFAULT 
          >>>> ANNOTATION       : Gas entrapped 
          >>>> VALUE 
          >>>> initial GUESS    : 10.25 
          >>>> admissible RANGE : 10.01 10.99 
          >>>> VARIATION        : 0.10 
          <<<< 
      <<< 
   << 
 
 > OBSERVATION 
 
   >> select : 60 points in TIME, EQUALLY spaced between 
      10.0 600.0 seconds 
 
   >> PRESSURE 
      >>> ELEMENT                  : A1125 
          >>>> ANNOTATION          : Pressure 1/2 
          >>>> HEADER contains     : 2 lines 
          >>>> COLUMNS             : 1 2          (time vs. pressure) 
          >>>> Read DATA from FILE : sam1p2i.col  (time is in MINUTES) 
          >>>> standard DEVIATION  : 200.0 Pa     (measurement error) 
          <<<< 
      <<< 
 
   >> LIQUID FLOW RATE 
      >>> CONNECTION defining inlet: IN__0  A11_1 
          >>>> ANNOTATION          : Flow inlet 
          >>>> FACTOR              :-1.666667E-05 (ml/min - kg/sec) 
          >>>> HEADER contains     : 2 lines 
          >>>> COLUMNS             : 1 3          (time vs. flow rate) 
          >>>> Read DATA from FILE : sam1p2i.col  (time is in MINUTES) 
          >>>> standard DEVIATION  : 5.0 ml/min   (measurement error) 
          <<<< 
      <<< 
   << 
 

 
Figure 2.4.1. iTOUGH2 input file sam1p4i. Performs parameter estimation by inverse 
modeling.  
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 > COMPUTATION 
 
   >> STOP 
      >>> after : 5  ITERATIONS 
      >>> ignore WARNINGS 
      <<< 
 
   >> ERROR 
      >>> use A PRIORI error variance for error analysis 
      <<< 
 
/* 
   >> OPTION 
      ... solve FORWARD problem only 
      >>> perform SENSITIVITY analysis 
      <<< 
 
   >> OUTPUT 
      >>> PLOTFILE contains : COLUMNS 
      <<< 
*/ 
   << 
 < 
 

Figure 2.4.1 (cont.). iTOUGH2 input file sam1p4i. Performs parameter estimation by 
inverse modeling. 
 
 
By default, the error analysis is based on the a posteriori or estimated error variance, which 
is calculated from the final residuals. In our case, however, the estimated error variance 
would be very close to zero because no random noise representing measurement errors has 
been added to the synthetic data. The command >>> A PRIORI makes iTOUGH2 use 
the a priori defined error variance for the error analysis, i.e., it is assumed that the final 
residuals exhibit a standard deviation of 200 Pa and 5 ml/min, respectively. Blocks 
>> OPTION and >> OUTPUT are deactivated by surrounding them with “/*” and 
“*/” comment characters, making iTOUGH2 perform the default application, i.e., 
parameter estimation by means of the Levenberg-Marquardt minimization algorithm. The 
plot file will be generated using the default time units (seconds) and the default format 
instead of columns. The default plot file format, which is TECPLOT (plot file extension 
.tec), can be changed by redefining variable IPLOTFMT in BLOCK DATA IT, file 
it2main.f. 
 
The inversion is started by typing 
 
itough2 sam1p4i sam1 3 & 
 
The optimization process can be followed during execution by typing the Unix command 
prista which displays the current status of the inversion, i.e., the number of TOUGH2 
runs and iTOUGH2 iterations completed, parameter updates and current parameter values, 
reduction and current value of objective function, etc. (on a PC, this information is printed 
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to the screen). Repeated use of prista may suggest termination of the inversion before 
the specified maximum number of iTOUGH2 iterations has been reached because no 
significant reduction of the objective function can be achieved. Termination is supported by 
the kit command, which ensures that complete output is generated before execution of 
iTOUGH2 is stopped. The installation and usage of Unix commands prista and kit. 
On a PC, an iTOUGH2 run can be safely interrupted by typing ctrl-c, which does not 
immediately terminate the run, but instead offers the options described above. 
After completion of the inversion, results are written to various output files. The main 
iTOUGH2 output file is named sam1p4i.out and contains optimization statistics, error and 
residual analyses, and the best estimate parameter set. File sam1.out contains the TOUGH2 
output from the last simulation, which is in most cases the run with the best estimate 
parameter set. Additional messages can be found in file sam1p4i.msg.The values of the best 
estimate parameter set are also written to file sam1p4i.par for convenient restarting of an 
iTOUGH2 run (see Part 5). The plot file sam1p4i.tec contains the interpolated data at the 
calibration points, the simulated system response using the initial parameter set, and the 
simulated system response using the best estimate parameter set. 
The symbols in Figures 2.4.2 and 2.4.3 represent the synthetic pressure and flow rate data, 
respectively, as read from file sam1p2i.col. The simulation results obtained with the initial 
and final parameter sets are shown as dashed and solid lines, respectively. The perfect 
match demonstrates that the minimum of the objective function is accurately identified 
within 5 iterations. The estimated and true parameter sets are identical, verifying parameter 
estimation by iTOUGH2 for this well-posed inverse problem. 
Part 4 of Problem 1 is convenient to explore many iTOUGH2 features. It is suggested to 
perform a variety of additional inversions to test the capability of iTOUGH2. For example, 
minimization could be started from different initial parameter guesses, noisy data could be 
generated and used for inversion, and systematic errors can be introduced to study their 
impact on the estimates. Additional or different parameters can be determined, such as the 
pore space compressibility (instead of or in addition to the initial gas saturation), boundary 
pressure at the inlet, or parameters of the relative permeability and capillary pressure 
functions can be subjected to the estimation process. Furthermore, the user should experi-
ment with different options for defining parameters, observations, and data. The use of 
prista and kit can also be practiced, i.e., runs can be prematurely terminated and 
restarted, etc. 
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Figure 2.4.2. Pressure transient at center of column calculated with initial parameter set 
(dashed line) and after optimization (solid line). Synthetic data are shown as squares. 
 

 

 
Figure 2.4.3. Flow rates at inlet calculated with initial parameter set (dashed line) and 
after optimization (solid line). Synthetic data are shown as squares. 

File Name : sam1_4_p.eps
Creator :  TECPLOT
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Creator :  TECPLOT
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2.5 Uncertainty Propagation Analysis 
 
iTOUGH2 offers two methods for studying the effects of parameter uncertainty on model 
predictions: (1) first-order-second-moment (FOSM) error propagation analysis, and (2) 
Monte Carlo simulations (including Latin Hypercube Sampling). For small standard 
deviations of the input parameters, and if the model output can be approximated by a linear 
function of the parameters within the range of the error band, FOSM is a fast method to 
calculate a measure of prediction uncertainty that is easy to report. If the model is highly 
nonlinear, and the uncertainties of the input parameters are large, Monte Carlo simulations 
have to be performed to examine many parameter combinations. For outputs that do not 
show a normal or log-normal distribution, Monte Carlo simulations provide the full 
distribution of the system output at the selected points in space and time. The Monte Carlo 
method is very flexible in handling non-Gaussian distributions of both input parameters 
and output variables, but they are computationally expensive, and results are difficult to 
report. In this sample problem we compare both approaches, and at the same time introduce 
a few additional iTOUGH2 options that are useful for many other iTOUGH2 applications. 
The standard deviations of three uncorrelated TOUGH2 input parameters, )log(k , φ , and
giS , are assumed to be 0.1, 0.05, and 0.05, respectively (note that parameter correlations 

can be accounted for in the Monte Carlo runs by using either Empirical Orthogonal 
Functions or Latin Hypercube Sampling). The best estimates of the three parameters are 
taken from the previous inversion, and are directly read from file sam1p4i.par. This 
iTOUGH2 option (see Figure 2.5.1) allows the execution of a sequence of problems in 
series as a batch job.  
Performing a simulation of a synthetic laboratory experiment, we are interested in the 
reliability of the model predictions, e.g., the uncertainty of the pressure in the center of the 
column. The laboratory experiment consists of three parts: (1) injection of water into a 
partially saturated sand column for 5 minutes under constant pressure, (2) injection of gas 
for 2.5 minutes, followed by (3) a 2.5 minute shut-in recovery period. In standard TOUGH2, 
the three test events would have to be run separately in sequence, where the simulation is 
stopped after 5 and 7.5 minutes, and restarted after adjustment of the boundary condition at 
the inlet. In iTOUGH2, however, it is necessary to handle all three test events in a single 
TOUGH2 simulation. This requires automatic adjustment of boundary conditions at 0.5=t  
and 5.7=t  minutes. While general, time-dependent boundary conditions can be supplied 
through subroutine USERBC (see Problem 5), simple changes of primary variables and 
element volumes can be conveniently specified directly in the iTOUGH2 input file using the 
>>>> RESTART option (see Figure 2.5.1).  
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> PARAMETER 
 
  >> Take first GUESS (= mean) from FILE: sam1p4i.par 
 
  >> ABSOLUTE permeability 
     >>> MATERIAL                : SAND_ BOUND 
         >>>> ANNOTATION         : log(abs. perm.) 
         >>>> LOGARITHM 
         >>>> standard DEVIATION : 0.10 
         <<<< 
      <<< 
 
  >> POROSITY 
     >>> MATERIAL                : SAND_ 
         >>>> VALUE 
         >>>> admissible RANGE   : 0.01 0.99 
         >>>> standard DEVIATION : 0.05 
         <<<< 
     <<< 
 
  >> INITIAL condition for primary variable No.:2 
     >>> DEFAULT 
         >>>> ANNOTATION         : Gas entrapped 
         >>>> VALUE 
         >>>> admissible RANGE   : 10.01 10.99 
         >>>> standard DEVIATION : 0.05 
         <<<< 
     <<< 
  << 
 
> OBSERVATION 
 
  >> select : 60 points in TIME, EQUALLY spaced between 
     10.0 600.0 seconds 
 
  >> RESTART TIME: 1  in [MINUTE] 
     5.0 
     IN__0  2  10.99   (replace water by air in injection grid block) 
 
  >> RESTART TIME: 1  in [MINUTE] 
     7.5 
     IN__0  0  1.0E-06 (reduce volume for shut-in recovery) 
 
  >> PRESSURE 
     >>> ELEMENT                  : A1125 
         >>>> ANNOTATION          : Pressure 1/2 
         >>>> NO DATA (this is a prediction) 
         <<<< 
     <<< 
  << 
 

 
Figure 2.5.1. iTOUGH2 input file sam1p5i used to examine prediction uncertainty using 
first-order-second-moment (FOSM) error propagation analysis. 
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> COMPUTATION 
 
  >> JACOBIAN 
     >>> use CENTERED finite difference quotient and 
     >>> PERTURB by as much as: 5 % 
     <<< 
 
  >> ERROR 
     >>> draw error band on (1-ALPHA)=: 95 % confidence level 
     >>> First-Order-Second-Moment (FOSM) error propagation analysis 
     <<< 
  << 
< 
 

Figure 2.5.1 (cont.). iTOUGH2 input file sam1p5i used to examine prediction uncertainty 
using first-order-second-moment (FOSM) error propagation analysis. 
 
 
When performing a FOSM analysis, it is suggested to use a relatively large perturbation 
factor of 5% in combination with a centered finite difference quotient. The plotfile 
sam1p5i.tec contains the predicted pressure for the mean parameter values as well as the 
upper and lower bounds of the error band on the confidence level specified by the 
>>> ALPHA command. 
In order to invoke Monte Carlo simulations, the > COMPUTATION block has to be 
adjusted as shown in Figure 2.5.2. Various seed numbers should be tried in combination 
with keyword GENERATE only, until a satisfactory distribution of the input parameters 
is achieved as shown in Figure 2.5.3. (Note that the prescribed distribution can always be 
very accurately reproduced using Latin Hypercube Sampling.) Then, keyword GENERATE 
can be deleted to invoke the actual Monte Carlo simulations. Make sure that the parameter 
range is specified in the > PARAMETER block. 
 
 
 

> COMPUTATION 

 

  >> STOP 

     >>> after : 100 Monte Carlo SIMULATIONS 

     <<< 

 

  >> ERROR 

     >>> MONTE CARLO (SEED: 5555, G-ENERATE parameter distribution only) 

     <<< 

  << 

< 

 

Figure 2.5.2. Excerpt from iTOUGH2 input file sam1p6i. Examines prediction uncertainty 
using Monte Carlo simulations. 
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================================================================================= 
 Parameter No.  1 : log(abs. perm.)   Distribution   :          Normal 
 Mean             :   -0.117033E+02   Std. Deviation :    0.972834E-01 
 Median           :   -0.117149E+02   Abs. Deviation :    0.753373E-01 
 Skewness         :    0.478091E+00   Kurtosis       :   -0.560910E-01 
 Lower bound      :   -0.119150E+02   Upper bound    :   -0.114732E+02 
 
 -0.118929E+02     3   *** 
 -0.118488E+02     6   ****** 
 -0.118046E+02    11   *********** 
 -0.117604E+02    18   ****************** 
 -0.117162E+02    20   ******************** 
 -0.116720E+02    16   **************** 
 -0.116278E+02    10   ********** 
 -0.115837E+02     7   ******* 
 -0.115395E+02     2   ** 
 -0.114953E+02     7   ******* 
 
================================================================================= 
 Parameter No.  2 :   POROSITY SAND   Distribution   :          Normal 
 Mean             :    0.355584E+00   Std. Deviation :    0.550290E-01 
 Median           :    0.356865E+00   Abs. Deviation :    0.443855E-01 
 Skewness         :    0.557419E-01   Kurtosis       :   -0.140633E+00 
 Lower bound      :    0.219433E+00   Upper bound    :    0.508323E+00 
 
  0.233877E+00     3   *** 
  0.262766E+00     2   ** 
  0.291655E+00    15   *************** 
  0.320545E+00    16   **************** 
  0.349434E+00    20   ******************** 
  0.378323E+00    19   ******************* 
  0.407212E+00    13   ************* 
  0.436101E+00     8   ******** 
  0.464990E+00     2   ** 
  0.493879E+00     2   ** 
 
================================================================================= 
 Parameter No.  3 :   Gas entrapped   Distribution   :          Normal 
 Mean             :    0.103115E+02   Std. Deviation :    0.435180E-01 
 Median           :    0.103132E+02   Abs. Deviation :    0.337077E-01 
 Skewness         :    0.154505E+00   Kurtosis       :   -0.198084E+00 
 Lower bound      :    0.102188E+02   Upper bound    :    0.104311E+02 
 
  0.102294E+02     6   ****** 
  0.102507E+02     9   ********* 
  0.102719E+02    12   ************ 
  0.102931E+02    12   ************ 
  0.103143E+02    28   **************************** 
  0.103356E+02    11   *********** 
  0.103568E+02    11   *********** 
  0.103780E+02     7   ******* 
  0.103992E+02     2   ** 
  0.104205E+02     2   ** 
 

Figure 2.5.3. Excerpt from iTOUGH2 output file sam1p6i.out, showing the distribution of 
the uncertain input parameters. 
 
The results from both the FOSM and Monte Carlo uncertainty analyses are visualized in 
Figure 2.5.4. While the linear FOSM analysis gives a reasonable estimate of prediction 
uncertainty for most parts of the experiment, the Monte Carlo simulations reveal an 
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asymmetry of the output distribution in the period where non-linearities prevail. Note that 
FOSM analysis assigns a certain probability to pressure responses that are below 1 bar, 
which is physically not possible. The Monte Carlo simulations stay away from that lower 
bound. A parameter combination of low permeability, high porosity, and low initial gas 
saturation yielded the highest pressures. 
 
 

 
Figure 2.5.4. Comparison between FOSM and Monte Carlo uncertainty propagation 
analysis. 
 
Note that the results shown in Figures 2.5.3 and 2.5.4 are platform specific due to the use of 
a random number generator. 
 
The example shown presents only the basic variant of a Monte Carlo uncertainty 
propagation analysis. iTOUGH2 provides option to include parameter correlations using 
empirical orthogonal functions as well as Latin Hypercube Sampling (with and without 
parameter correlations). The user is referred to the appropriate sections in the iTOUGH2 
Command Reference [Finsterle, 2016] for a discussion of these options and sample input 
files. 
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3. PROBLEM 2:  ANALYSIS OF LABORATORY  
 EXPERIMENT WITH KLINKENBERG EFFECT 
 
3.1 Modeling the gas-pressure-pulse-decay experiment 
 
In Problem 2, data from gas-pressure-pulse-decay (GPPD) experiments are analyzed to 
determine permeability, Klinkenberg slip factor, and porosity of a fine-grained graywacke 
core plug from the Geysers Coring Project [Hulen et al., 1995; Finsterle and Persoff, 
1997]. The experiments were conducted using a specially designed permeameter with small 
gas reservoirs. A schematic of the experimental apparatus is shown in Figure 3.1.1. To 
conduct a test, the upstream reservoir is rapidly pressurized to a value about 300 kPa above 
the initial pressure of the system using nitrogen gas. Gas starts to flow through the sample, 
and the pressures in both the upstream and downstream reservoirs are monitored as they 
equilibrate with time.  

 
Figure 3.1.1. Schematic of gas-pressure-pulse-decay apparatus. 
 
 
In porous media with very low permeability and porosity, gas mass flow F  [kg⋅s-1⋅m-2] may 
be enhanced as a result of slip flow known as the Klinkenberg effect. 
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Here, k is the absolute permeability, gρ  is the gas density, gµ  is the gas dynamic viscosity, 
and gP  is the gas pressure. The term in parentheses accounts for enhanced gas slip flow, 
which occurs when the mean free path of the molecules is large relative to the characteristic 
dimension of the pores. Slip flow is important at low pressures and in small pores, when a 
significant fraction of molecular collision is with the pore wall rather than with other gas 
molecules. In (3.1.1), b  is the Klinkenberg slip factor that is a characteristic of both the 
geometry of the pore space and the thermophysical properties of the gas. It is directly 
proportional to the mean free path of the molecules [Klinkenberg, 1941]. 
An excerpt from the TOUGH2 input file sam2 is shown in Figure 3.1.2. A one-dimensional 
model is connected to two gridblocks representing the gas reservoirs. Core plug, upstream 
and downstream reservoirs have been assigned to separate model domains (see block 
ROCKS) for convenient definition of initial conditions (see block INDOM). Furthermore, 
this arrangement is suitable for subsequent parameter estimation (see Section 3.4). Since 
data from three experiments will be analyzed simultaneously, there are three such columns 
merged into the TOUGH2 blocks ELEME and CONNE, where the number of the 
experiment is indicated by the last digit of the corresponding gridblock names. There is also 
a GENER block with an extremely small production rate that does not affect the system 
response. This block will be used in the Part 3 of Problem 2 to simulate and estimate 
leakage (see Section 3.4). 
We perform a stepwise analysis of the GPPD data to illustrate specific aspects of inverse 
modeling. The consequences of posing a non-unique inverse problem are discussed in 
Section 3.2. The strong correlation between absolute permeability and Klinkenberg slip 
factor is resolved by adding data from two additional experiments performed at different 
pressure levels (Section 3.3). Finally, we discuss the impact of systematic errors, and how 
they can be parameterized in this specific case. Section 3.4 also addresses the issue of over-
parameterization and discusses the difference between direct and indirect correlations. 
Table 3.1.1 summarizes the cases considered. More information can be found in Finsterle 
and Persoff [1997]. 
 
 
 
Table 3.1.1. Overview of Inverse Modeling Runs  

Part Data Parameters Issue 
1 pressure level 1 )log(k , )log(b , φ  Sensitivity analysis, non-uniqueness, 

parameter correlation 
2 pressure level 1, 2, 3 )log(k , )log(b , φ  Joint inversion, 

biased estimates due to systematic 
errors 

3 pressure level 1, 2, 3 )log(k , )log(b , φ , 
initial pressures p0, 
leakage rate q 

Joint inversion, 
parameterization of systematic errors,  
over-parameterization 
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sam2: Gas-pressure-pulse-decay experiment 
ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
GEYS1    1     2650.     .0150 2.020E-21 2.020E-21 2.020E-21      2.51      920. 
                                         2.106E+07 
GEYS2    1     2650.     .0150 2.020E-21 2.020E-21 2.020E-21      2.51      920. 
                                         2.106E+07 
GEYS3    1     2650.     .0150 2.020E-21 2.020E-21 2.020E-21      2.51      920. 
                                         2.106E+07 
TOPB1    1     2650.     .9900 2.020E-21 2.020E-21 2.020E-21      2.51   100000. 
                                         2.106E+07 
BOTB1    1     2650.     .9900 2.020E-21 2.020E-21 2.020E-21      2.51   100000. 
                                         2.106E+07 
TOPB2    1     2650.     .9900 2.020E-21 2.020E-21 2.020E-21      2.51   100000. 
                                         2.106E+07 
BOTB2    1     2650.     .9900 2.020E-21 2.020E-21 2.020E-21      2.51   100000. 
                                         2.106E+07 
TOPB3    1     2650.     .9900 2.020E-21 2.020E-21 2.020E-21      2.51   100000. 
                                         2.106E+07 
BOTB3    1     2650.     .9900 2.020E-21 2.020E-21 2.020E-21      2.51   100000. 
                                         2.106E+07 
  
RPCAP----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
    5 
    1      0.000E+00 0.000E+00 0.100E+01 
PARAM----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
  -29999    9999100000100000000400003000 0.000E-00 2.334E+00 0.000E+00 
          1.00000E09       -1. 0.300E+09           0.0000000 
 0.100E+01 
  
 100000.000000000000                 1.0                26.8 
  
ELEME----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
A11 1          TOPB1 .2080E-05 .5091E-03           .2545E-03 .5000E+00-.5000E-03 
A21 1          GEYS1 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.1500E-02 
A31 1          GEYS1 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.2500E-02 
.....          ..... ......... .........           ......... ......... ......... 
BG1 1          GEYS1 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.5050E-01 
BH1 1          GEYS1 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.5150E-01 
BI1 1          BOTB1 .2080E-05 .5091E-03           .2545E-03 .5000E+00-.5250E-01 
A11 2          TOPB2 .2080E-05 .5091E-03           .2545E-03 .5000E+00-.5000E-03 
A21 2          GEYS2 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.1500E-02 
A31 2          GEYS2 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.2500E-02 
.....          ..... ......... .........           ......... ......... ......... 
BG1 2          GEYS2 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.5050E-01 
BH1 2          GEYS2 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.5150E-01 
BI1 2          BOTB2 .2080E-05 .5091E-03           .2545E-03 .5000E+00-.5250E-01 
A11 3          TOPB3 .2080E-05 .5091E-03           .2545E-03 .5000E+00-.5000E-03 
A21 3          GEYS3 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.1500E-02 
A31 3          GEYS3 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.2500E-02 
.....          ..... ......... .........           ......... ......... ......... 
BG1 3          GEYS3 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.5050E-01 
BH1 3          GEYS3 .5091E-06 .0000E+00           .2545E-03 .5000E+00-.5150E-01 
BI1 3          BOTB3 .2080E-05 .5091E-03           .2545E-03 .5000E+00-.5250E-01 
  
CONNE----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
A11 1A21 1                   3 .5000E-03 .5000E-03 .5091E-03 .1000E+01 
A21 1A31 1                   3 .5000E-03 .5000E-03 .5091E-03 .1000E+01 
..........                   . ......... ......... ......... ......... 
  

Figure 3.1.2. TOUGH2 input file sam2. 
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INDOM----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
TOPB1 
 401000.000000000000 1.0000000000000E+00  .2680000000000E+02 
BOTB1 
 112500.000000000000 1.0000000000000E+00  .2680000000000E+02 
GEYS1 
 112500.000000000000 1.0000000000000E+00  .2680000000000E+02 
TOPB2 
1690000.000000000000 1.0000000000000E+00  .2680000000000E+02 
BOTB2 
1398900.000000000000 1.0000000000000E+00  .2680000000000E+02 
GEYS2 
1398900.000000000000 1.0000000000000E+00  .2680000000000E+02 
TOPB3 
2910000.000000000000 1.0000000000000E+00  .2680000000000E+02 
BOTB3 
2618300.000000000000 1.0000000000000E+00  .2680000000000E+02 
GEYS3 
2618300.000000000000 1.0000000000000E+00  .2680000000000E+02 
  
GENER----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
AQ1 2TOP 2                   0     MASS  -1.00E-30 
AQ1 3TOP 3                   0     MASS  -1.00E-30 
 
ENDCY----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 

Figure 3.1.2 (cont.). TOUGH2 input file sam2. 
 
 
3.2 An ill-posed inverse problem 
 
It is obvious from Equation (3.1.1) that the Klinkenberg slip factor b  and absolute perme-
ability k  are linearly dependent if the average pressure in the core remains constant, i.e., if 
only late-time data are available from an experiment performed at a single pressure level. If 
one tries to estimate both parameters based on the pressure data from a single GPPD 
experiment, the resulting inverse problem is ill-posed because the solution is non-unique. 
The purpose of this section is to discuss those aspects of the iTOUGH2 error analysis that 
point towards ill-posedness of the inverse problem. 
In Part 1, three parameters are estimated, namely the logarithm of absolute permeability, 

)log(k , the logarithm of the Klinkenberg slip factor, )log(b , and the porosityφ . These 
three parameters are estimated based on the pressure data from a single GPPD experiment, 
which was performed at the lowest pressure level, where Klinkenberg effects are expected 
to be most pronounced. The iTOUGH2 input file is shown in Figure 3.2.1. It also contains 
input blocks needed for Part 2 and Part 3, surrounded by “/*” and “*/” comment char-
acters.  
Note that each parameter refers to multiple materials, i.e., there will be only one estimate of 

)log(k , )log(b , and φ , respectively, which will be assigned to the listed rock types and 
therefore to all elements with the corresponding material names.  
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> PARAMETER 
 
  >> ABSOLUTE permeability 
     >>> MATERIAL: GEYS1 GEYS2 GEYS3 TOPB1 TOPB2 TOPB3 BOTB1 BOTB2 BOTB3 
         >>>> estimate LOGARITHM 
         >>>> permeability INDEX : 3  i.e. estimate vertical permeability 
         >>>> maximum STEP       : 2.0 
         >>>> initial GUESS      : -19.0 
         >>>> expected VARIATION :   1.0 
         >>>> allowable RANGE    : -25.0  -12.0 
         <<<< 
     <<< 
 
  >> KLINKENBERG parameter 
     >>> MATERIAL: GEYS1 GEYS2 GEYS3 TOPB1 TOPB2 TOPB3 BOTB1 BOTB2 BOTB3 
         >>>> estimate LOGARITHM 
         >>>> initial  GUESS     : 7.0 
         >>>> maximum  STEP      : 2.0 
         >>>> VARIATION          :   1.0 (scales sensitivity measures) 
         <<<< 
     <<< 
 
  >> POROSITY 
     >>> MATERIAL:  GEYS1 GEYS2 GEYS3 
         >>>> estimate VALUE 
         >>>> RANGE              : 0.005 0.100 
         >>>> maximum STEP       : 0.02        per iTOUGH2 iteration 
         >>>> VARIATION          : 0.01 
         <<<< 
     <<< 
 
/* (delete this line for Part 3, see Section 3.4) 
 
  >> INITIAL PRESSURE 
 
     >>> MATERIAL: TOPB1  = inlet pressure of experiment 1 
         >>>> VALUE 
         >>>> PRIOR INFORMATION  :  5.0E5 
         >>>> VARIATION          :  0.1E5 
         <<<< 
 
     >>> MATERIAL: TOPB2 = inlet pressure of experiment 2 
         >>>> VALUE 
         >>>> PRIOR              : 17.0E5 
         >>>> VARIATION          : 0.1E5 
         <<<< 
 
     >>> MATERIAL: TOPB3 = inlet pressure of experiment 3 
         >>>> VALUE 
         >>>> PRIOR              : 30.0E5 
         >>>> VARIATION          :  0.1E5 
         <<<< 
     <<< 
 

Figure 3.2.1. iTOUGH2 input file sam2p1i. Includes input for Part 2 and Part 3.  
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  >> GENERATION RATE 
 
     >>> SOURCE: TOP_2 
         >>>> ANNOTATION: Leakage Inlet 2 
         >>>> LOGARITHM 
         >>>> VARIATION : 1.0 
         >>>> GUESS     : -12.0 
         >>>> STEP      : 0.25 
         <<<< 
 
     >>> SOURCE: TOP_3 
         >>>> ANNOTATION: Leakage Inlet 3 
         >>>> LOGARITHM 
         >>>> VARIATION : 1.0 
         >>>> GUESS     : -12.0 
         >>>> STEP      : 0.25 
         <<<< 
     <<< 
 
*/ (delete this line for Part 3, see Section 3.4) 
 
  << 
 
> OBSERVATION 
 
  >> TIMES: 1 
     100.0 
 
  >> TIMES: 30 LOGARITHMICALLY SPACED 
     120.0 85200.0 
 
  >> TIME:  2 
     67505.0 68605.0 
 
  >> GAS PRESSURE 
 
     >>> ELEMENT: A11_1 
         >>>> ANNOTATION  : INLET 1 
         >>>> HEADER      : 3 
         >>>> SET No.     : 1 
         >>>> DATA on File: gppd.dat 
         >>>> DEVIATION   : 1000.0  [Pa] (approx. measurement error) 
         <<<< 
 
     >>> ELEMENT: BI1_1 
         >>>> ANNOTATION  : OUTLET 1 
         >>>> HEADER      : 3 
         >>>> SET No.     : 1 
         >>>> COLUMNS     : 1 3 
         >>>> DATA on File: gppd.dat 
         >>>> DEVIATION   : 1000.0  [Pa] 
         <<<< 

 
Figure 3.2.1 (cont.). iTOUGH2 input file sam2p1i.  Includes input for Parts 2 and 3. 
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/* (delete this line for Part 2, see Section 3.3) 
 
     >>> ELEMENT: A11_2 
         >>>> ANNOTATION  : INLET 2 
         >>>> HEADER      : 3 
         >>>> SET No.     : 2 
         >>>> DATA on File: gppd.dat 
         >>>> DEVIATION   : 1000.0  [Pa] 
         <<<< 
 
     >>> ELEMENT: BI1_2 
         >>>> ANNOTATION  : OUTLET 2 
         >>>> HEADER      : 3 
         >>>> SET No.     : 2 
         >>>> COLUMNS     : 1 3 
         >>>> DATA on File: gppd.dat 
         >>>> DEVIATION   : 1000.0  [Pa] 
         <<<< 
 
     >>> ELEMENT: A11_3 
         >>>> ANNOTATION  : INLET 3 
         >>>> HEADER      : 3 
         >>>> SET No.     : 3 
         >>>> DATA on File: gppd.dat 
         >>>> DEVIATION   : 1000.0  [Pa] 
         <<<< 
 
     >>> ELEMENT: BI1_3 
         >>>> ANNOTATION  : OUTLET 3 
         >>>> HEADER      : 3 
         >>>> SET No.     : 3 
         >>>> COLUMNS     : 1 3 
         >>>> DATA on File: gppd.dat 
         >>>> DEVIATION   : 1000.0  [Pa] 
         <<<< 
 
*/ (delete this line for Part 2, see Section 3.3) 
 
     <<< 
   << 
 
> COMPUTATION 
 
  >> CONVERGENCE 
     >>> number of ITERATIONS:  8 
     >>> ignore WARNINGS 
     >>> initial value of LEVENBERG parameter: 0.01 
     <<< 
 
  >> JACOBIAN 
     >>> FORWARD: 5 
     <<< 
  << 
< 
 

Figure 3.2.1 (cont.). iTOUGH2 input file sam2p1i. Includes input for Parts 2 and 3.  
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The three >> TIME statements provide calibration times for Parts 1, 2, and 3. In Part 1, 
only data from the first GPPD experiment, which lasted for 67,505 seconds, are analyzed. 
This leads to an automatic adjustment of the time window used for calibration and a corre-
sponding warning message that has to be set aside by command >>> WARNING in block 
> COMPUTATION.  
All the data are read from file gppd.dat, which has three header lines. Time is in the first 
column, and data from the upstream and downstream reservoirs are in the second and third 
columns, respectively. Data from the three experiments are stored in three sets, separated 
by a single line of text. The two commands >>>> COLUMN and >>>> SET are used 
to select the pressure data that correspond to one of the reservoirs and the desired 
experiment.  
The data and the calculated pressures in the upper and lower reservoir are shown in Figure 
3.2.2. The dash-dotted lines correspond to the calculated system response with the initial 
guess for the parameters; the solid lines depict the match after model calibration. The 
overall system behavior can be described as follows. The gas pressure in the pore space and 
the two reservoirs is allowed to reach equilibrium prior to testing. After quick injection of a 
certain amount of gas into the upstream reservoir, gas starts to flow through the sample to 
the downstream reservoir. Note that the high gas compressibility yields a relatively large 
storage capacity in the sample itself, leading to a faster pressure decrease in the upstream 
reservoir and a delayed response in the downstream reservoir. If the experiment were run to 
steady state, the pressure in the system would be somewhat below the average value of the 
initial pressure and the applied pressure pulse, the difference being a measure of the amount 
of gas stored in the pore space of the core. 
 
The elements of the Jacobian matrix J  provide a means to examine the contribution of 
each data point to the solution of the inverse problem. In Figure 3.2.3, the scaled sensitivity 
coefficients are plotted. They are defined as the partial derivatives of the model output with 
respect to the input parameters, multiplied by the inverse of the respective prior standard 
deviations: 
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Since only pressure data of equal accuracy are used in this study, an arbitrary value for 

zzi
σσ =  of 1000 Pa can be chosen. The choice of 

jp
σ can be based on the variance of an 

independent parameter measurement, for example if porosity was determined by mercury 
intrusion porosimetry. Prior information in the sense of Carrera and Neuman [1986] is 
introduced by using command >>>> DEVIATION in block > PARAMETER. For this 
sensitivity analysis, however, 

jp
σ simply scales the sensitivity coefficients, reflecting the 

expected variation of a parameter. This interpretation is invoked by command 
>>>> VARIATION (see Figure 3.2.1). 
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Figure 3.2.2. Comparison between measured and calculated pressures. 
 
 

 
Figure 3.2.3. Sensitivity of pressure in upstream and downstream reservoir with respect to 
permeability, Klinkenberg factor, and porosity as a function of time. 
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The curves in Figure 3.2.3 show, for example, that an increase in porosity leads to lower 
pressures in both reservoirs, whereas an increase in permeability or Klinkenberg factor 
reduces the upstream pressure, but increases the downstream pressure. This behavior is 
physically evident. More interesting is the temporal behavior of the sensitivity coefficients. 
It is obvious that the pressures in the upstream reservoir are immediately affected by 
changes of the parameters, whereas some time has to pass before the downstream pressure 
data become sensitive. The absolute sensitivities to )log(k  and )log(b  increase with time 
and reach a maximum at the inflection point of the pressure transient where gas flow 
through the sample is sizable and average storativity effects have ceased. The longer the 
experiment lasts, the less additional information about conductivity can be drawn from the 
data, since pressure differences and thus flow rates become very small. Eventually the 
sensitivity coefficients tend to zero. On the other hand, porosity remains sensitive, 
approaching a constant non-zero value at late time. Porosity could be uniquely identified 
from the steady-state pressure ∞p and the initial pressure in the upstream ( upp ,0 ) and 
downstream ( dop ,0 ) reservoirs of volumes upV  and doV , respectively, to be: 
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Analysis of the transient data by inverse modeling techniques allows for a reasonably accu-
rate estimation in a much shorter time, taking advantage of the increased sensitivity of the 
upstream pressure data at early times.  
Note that the information provided by the sensitivity plot can be obtained prior to testing, 
i.e., in the design stage of an experiment. Test duration and most sensitive periods can be 
identified, or requirements for sensor accuracy can be derived by comparing the results ob-
tained with different standard deviations zσ . Due to the non-linearity of the flow equation, 
the results of the sensitivity analysis are dependent on the as-yet-unknown parameter 
values, requiring repetition of the analysis for several potential parameter combinations.  
The actual experiment was stopped after about 67,505 seconds. This seems to be a good 
compromise since the incremental information content of the data with respect to 
permeability and Klinkenberg factor starts to decrease, and sufficient data have been 
collected to identify porosity. 
The inverse modeling results are summarized in Table 3.2.1. From the perfect match and 
favorable sensitivities one might expect that an accurate estimation of the three parameters 
is possible. However, an inspection of the covariance matrix of the estimated parameters 
reveals a large estimation uncertainty. The standard deviation of both permeability and 
Klinkenberg factor is about an order of magnitude. This is a result of a high correlation 
between the two parameters, which yields a non-unique solution.  
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Table 3.2.1. Summary of Inverse Modeling Results: Initial Guess, Best Estimate, 
Standard Deviation, and Ratio of Conditional and Marginal Standard Deviation, Part 1 

Parameter Initial Guess Best Estimate pσ  pp σσ *  

])[mlog( 2k  -19.00 -19.75 0.91 < 0.01 
])[Palog(b  7.00 6.34 1.03 < 0.01 

porosity φ  [%] 1.50 1.02 0.04 0.54 
 
Table 3.2.2. Estimation Covariance Matrix, Part 1 

 )log(k  )log(b  porosity 

)log(k  0.837 < -0.99 -0.84 
)log(b  -0.94 1.05 0.84 

porosity -3.02E-4 3.38E-4 1.54E-7 
Diagonal contains variances, lower triangle is covariance 
matrix, and upper triangle is correlation matrix 
 
Table 3.2.3. Eigenvectors and Eigenvalues of  
Estimation Covariance Matrix, Part 1 

Component Eigenvectors 

)log(k  0.75 -0.67 1.18E-2 
)log(b  0.67 0.75 1.02E-2 

Porosity -1.57E-2 2.40E-4 0.9999 
Eigenvalues 3.16E-6 1.89 4.40E-8 
 
 
The covariance matrix with the correlation coefficients in the upper triangle is shown in 
Table 3.2.2. The correlation coefficient between )log(k and )log(b is very close to -1, i.e., 
an increase in one parameter can be almost completely compensated by a decrease in the 
other parameter. The correlation coefficient from the covariance matrix reflects the degree 
to which the experiment is able to produce independent estimates. Parameter combinations 
along the eigenvector associated with the largest eigenvalue (see Table 3.2.3) lead to 
similar pressures and therefore cannot be accurately deduced from the available data. The 
elements of the corresponding eigenvector indicate the parameters primarily responsible for 
the ill-conditioning of the inverse problem. In this case, the interdependence between 

)log(k and )log(b is the dominant source of ill-conditioning as signaled by the large 
components of the eigenvector. On the other hand, porosity can be estimated relatively 
independently as indicated by the small eigenvalue for the third eigenvector in Table 3.2.3. 
Due to the ill-posedness of the inverse problem, the results shown in Tables 3.2.1 through 
3.2.3 are unstable, i.e., they may vary depending on the computer system used. 
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The physical explanation for this correlation structure is evident from Equation (3.1.1) 
where k  and b  become linearly dependent for a constant average pressure within the 
sample. In our transient experiment, the average pressure varies slightly with time due to 
the storage of gas in the pore space, which makes possible the solution of the inverse 
problem at hand. A more general measure of parameter dependency is the ratio between the 
marginal and the conditional standard deviation, reported in the last column of Table 3.2.1. 
The standard deviation pσ  is the square root of the diagonal element of matrix ppC  that 
refers to the marginal probability density function, i.e., it takes into account the influence 
from all correlated parameters. The conditional standard deviation *Pσ , on the other hand, 
reflects the uncertainty of an estimate provided that all the other parameters are exactly 
known. The conditional standard deviation of parameter i is the inverse of the i-th diagonal 
element of the Fisher information matrix )( 12

0 JCJF −−= zz
Ts . We propose to interpret the ratio 

pp σσ /*  as a comprehensive measure of how independently a parameter can be estimated. 
A value close to one signifies an independent estimate, whereas values close to zero 
indicate a loss of parameter identifiability due to its correlation to other uncertain 
parameters. Part 1 has demonstrated that achieving a good match is a necessary but not 
sufficient condition for inverse modeling. 
 
3.3 A well-posed inverse problem 
The objective of Part 2 is to reduce the statistical correlation between k  and b . The 
pressure dependence of gas slip flow suggests that the correlation can be reduced by 
performing experiments at different pressure levels. A simultaneous inversion of all 
available data should yield a unique solution. We have analyzed data from three GPPD 
experiments performed using the same core at pressure levels of about 0.3, 1.55, and 2.75 
MPa, respectively. The result from the joint inversion is summarized in Table 3.3.1. First, 
we note the high values for pp σσ /* , which imply that independent estimates have now 
been achieved. As shown in Table 3.3.2, the correlation between )log(k  and )log(b  is 
weakened from -0.99 in the previous case to -0.52. As expected, this leads to a significant 
decrease in the estimation error. The estimated values have changed by an order of 
magnitude compared to the previous analysis, in accordance with the correlation structure 
discussed above. Comparisons of the results of Part 1 and Part 2 clearly demonstrate that a 
good match and high parameter sensitivity are not sufficient to guarantee a meaningful 
solution of the inverse problem. Omitting a detailed analysis of the estimation uncertainty 
and correlation structure may lead to erroneous interpretations. 

Table 3.3.1. Summary of Inverse Modeling Results: Initial Guess, Best Estimate, 
Standard Deviation, and Ratio of Conditional and Marginal Standard Deviation, Part 2 

Parameter Initial Guess Best Estimate pσ  pp σσ /*  

)log(k  -19.00 -20.68 0.01 0.84 
)log(b  7.00 7.31 0.02 0.85 

porosity φ  [%] 1.50 1.81 0.09 0.99 
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Table 3.3.2. Estimation Covariance Matrix, Part 2 

 )log(k  )log(b  porosity 

)log(k  9.64E-5  -0.52 -0.12 
)log(b  -9.86E-5 3.68E-4 -0.02 

porosity -1.04E-6 -2.59E-7 8.53E-7 
Diagonal contains variances, lower triangle is covariance 
matrix, and upper triangle is correlation matrix 
 
 
Figure 3.3.1 shows the agreement between the calculated and observed pressures. While 
most of the data are reasonably well matched, late-time pressures are systematically under-
predicted for the experiment performed at the lowest pressure level, and overpredicted for 
the two experiments performed at the higher pressure level. This is better illustrated in 
Figure 3.3.2 where the residuals are plotted as a function of time. Unlike an ideal residual 
plot that shows random noise around zero with standard deviation zσ , Figure 3.3.2 reveals a 
systematic trend in the residuals. The increasing overprediction of pressures with time for 
the two experiments on the higher pressure level may indicate a gas leak in the apparatus. 
Since such a leak is not taken into account in the model, a systematic error is introduced 
leading to an overestimation of porosity that is increased during the optimization process to 
compensate for the gas volume leaked to the outside environment. 
It is very important to acknowledge the difference between systematic and random compo-
nents of the residuals. Provided that the true system behavior is identified, the residuals 
become equal to the random measurement errors. While the individual measurement errors 
are not known a priori, they are described in statistical terms, namely through covariance 
matrix zzC . However, the impact of systematic errors on the parameter estimates is usually 
much larger than the impact from the random noise in the data, even under well-controlled 
laboratory conditions. Systematic errors occur in both the data and the numerical 
simulation. In many cases it is difficult and also irrelevant to distinguish between a 
systematic modeling error and a systematic error in the data. Systematic errors are simply 
the result of a conceptual difference between reality and the model. It is more a question of 
convenience which side of the problem should be addressed to eliminate potential 
systematic errors. 
In some cases, potential systematic errors can be parameterized and subjected to the estima-
tion process. An example of this approach is discussed in Part 3, where uncertainties 
regarding initial conditions and potential leaking are addressed. 
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Figure 3.3.1. Comparison between measured and calculated pressure transient curves 
from three simultaneously inverted gas-pressure-pulse-decay experiments, Part 2. 
 
 

 
Figure 3.3.2. Residuals as a function of time, showing systematic overprediction of 
pressures at late times, Part 2. 
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3.4 Parameterizing systematic errors 
 
In Part 3, we try to reduce the impact of systematic errors and discuss the issue of over-
parameterization. Recall that the estimated parameters strictly refer to the structure of the 
model used to invert the data. The fact that a systematic error in the conceptual model leads 
to biased estimates became apparent in the previous case where the porosity estimate seems 
to be overpredicted due to leakage. In order to account for potential leakage, we introduce a 
sink term into the model and estimate its flow rate, which is assumed to be constant. Using 
a constant mass flux sink term to model the leak seems appropriate since the transient 
changes in reservoir pressures are relatively small compared to the pressure drop to 
atmospheric conditions. Furthermore, a test was performed with an impermeable steel plug 
in the sample holder. Pressure in both the upstream and downstream reservoirs declined 
exponentially, indicating a constant rate leak to the outside environment. 
Besides potential leaks, there is also uncertainty regarding the initial pressure in the upper 
reservoir. In the previous cases we simply picked the first data point as the initial condition. 
However, the upstream reservoir undergoes rapid pressurization, causing fluctuations in the 
data that immediately follow the shut-in of the valves. In order to overcome this problem, 
we consider the initial pressures in the upstream reservoirs as additional unknown 
parameters. Accounting for leakage and uncertainty in the initial pressures increases the 
dimension of parameter vector p  from 3 to 8. Adding 5 more parameters requires some 
justification. It is expected that the two new parameter types, initial pressure and leakage 
rate, can be estimated from independent data, thus mitigating the problem of high 
parameter correlation due to overparameterization. The initial pressures are most likely 
determined from early-time data, whereas leakage rate estimates are inferred from late-time 
data. Moreover, the direct correlations between the three initial pressure estimates are 
actually zero because they refer to independent experiments. The same argument applies to 
the two leakage rates. These considerations, which will be assessed further below (see 
discussion of Tables 3.4.2 and 3.4.3), make it seem unlikely that the inverse problem 
becomes over-parameterized when increasing the number of parameters from 3 to 8. 
With relatively inaccurate initial guesses for all unknown parameters (Table 3.4.1), 
iTOUGH2 was able to match the data of all three GPPD experiments very accurately within 
10 iterations (Figure 3.4.1). The residuals shown in Figure 3.4.2 are much smaller than the 
ones depicted in Figure 3.3.2. More important, they are devoid of a systematic trend and 
exhibit a random structure. 
The best estimates and their uncertainties are listed in Table 3.4.1. While permeability and 
Klinkenberg factor are not changed between Parts 2 and 3, a lower porosity value is 
realized due to the fact that leakage is explicitly modeled. The estimated value is consistent 
with the result from Part 1 where less leakage is expected due to the low pressure level of 
that experiment. The total amount of gas leaked out during Experiments 2 and 3 is 
estimated to be about 0.06 ml and 0.05 ml, respectively. 
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Figure 3.4.1. Comparison between measured and calculated pressure transient curves 
from three simultaneously inverted gas-pressure-pulse-decay experiments, Part 3. 
 
 

 
Figure 3.4.2. Residuals as a function of time, Part 3. Residuals exhibit a random structure. 
Note the difference in scale from Figure 3.3.2. 
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Table 3.4.1. Summary of Inverse Modeling Results: Initial Guess, Best Estimate, 
Standard Deviation, and Ratio of Conditional and Marginal Standard Deviation, Part 3 

Parameter Initial Guess Best Estimate pσ  pp σσ /*  

])[mlog( 2k  -19.00 -20.66 < 0.01 0.78 
])[Palog(b  7.00 7.31 < 0.01 0.80 

porosity φ [%] 1.50 1.05 0.04 0.50 
p0,Exp1 [bar] 5.00 4.01 0.05 0.69 
p0,Exp2 [bar] 17.00 16.88 0.04 0.71 
p0,Exp3 [bar] 30.00 29.07 0.04 0.71 
log(qExp2 [kg/s]) -12.00 -10.79 0.01 0.85 
log(qExp3 [kg/s]) -12.00 -10.71 0.01 0.86 
 
 
Table 3.4.2. Matrix of Direct (Lower Triangle) and Overall (Upper Triangle) Parameter 
Correlations, Part 3 

 )log(k  )log(b  φ  1,0 Expp  2,0 Expp  3,0 Expp  )log( 1q  )log( 2q  

)log(k  1.00 -0.51 0.19 0.14 0.32 0.32 0.02 0.02 
)log(b  -0.53 1.00 0.05 0.25 -0.08 -0.08 -0.06 -0.06 

φ  -0.13 -0.08 1.00 0.68 0.58 0.59 -0.34 -0.32 

1,0 Expp  0.19 0.35 0.47 1.00 0.40 0.41 -0.23 -0.21 

2,0 Expp  0.20 0.00 0.47 0.00 1.00 0.39 0.12 -0.16 

3,0 Expp  0.20 0.00 0.47 0.00 0.00 1.00 -0.19 0.14 
)log( 1q  -0.02 0.00 -0.37 0.00 0.41 0.00 1.00 0.12 
)log( 2q  -0.02 0.00 -_0.36 0.00 0.00 0.42 0.00 1.00 

 
 
Table 3.4.3. Goodness-of-Fit, Residual Statistics, and Model Identification Criteria 

 
Part 

Estimated 
Error 

Variance 2
0s  

Mean of 
Residuals 

[Pa] 

Std. Dev. of 
Residuals 

[Pa] 

 
A-Optimality 

 

Kashyap 
Criterion 

1 1.0 310 958 0.030 1024 
2 43.9 812 6540 0.003 11230 
3 2.4 151 1520 0.001 3465 
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Table 3.4.2 shows the direct and overall correlation coefficients. The direct correlations are 
more easily explained from a physical point of view. They indicate to which degree a 
change in one parameter can be compensated by a change in the other parameter. As 
mentioned above, the direct correlations between the initial pressure estimates are all zero. 
Increasing the initial pressure in one experiment cannot be compensated by a change in the 
initial pressure in any of the other two experiments because the experiments have been 
performed independently. In the model, there is no connection between the upper reservoir 
gridblocks of one experiment with the observation points of the other experiment. Despite 
the apparent independence of the initial pressure estimates as seen in the direct correlation 
coefficients, there is a substantial overall correlation of about 0.4 between these three 
parameters. This is a result of indirect correlations. For example, an increase in the initial 
pressure in the first experiment can be partly compensated by an increase in the absolute 
permeability, as indicated by a positive direct correlation coefficient. Conversely, this 
increase in absolute permeability can again be compensated by an increase in the initial 
pressure of the second experiment. As a result, the two initial pressure estimates are 
indirectly correlated through permeability (and all the other parameters). Overall 
correlations are usually difficult to interpret in an inversion involving three or more 
parameters due to the effects of indirect parameter dependencies. 
Parameterization of those aspects of the conceptual model that are most likely to be errone-
ous is a means to overcome the problem of biased estimation. However, there is a tradeoff 
between goodness-of-fit and minimum bias on one hand, and estimation uncertainty on the 
other hand. Increasing the number of parameters always leads to an improvement of the fit, 
but at the same time increases parameter correlations, resulting in higher estimation uncer-
tainties. This is seen in Part 3 where the standard deviation of porosity is reduced only by a 
factor of two despite a significant improvement of the fit. All ratios pp σσ /*  indicate 
higher overall parameter correlations. This is most pronounced for porosity, reflecting its 
correlation with the initial pressure estimates and leakage parameters. Overparameterization 
of the inverse problem yields higher parameter uncertainties and thus reduces the capabili-
ties of the predictive model.  
Table 3.4.3 summarizes some statistical parameters of the three inversions performed. The 
estimated error variance 2

0s  is a measure of goodness-of-fit. The first inversion results in 
the best match. Since the Kashyap model identification criterion has a substantial contribu-
tion from the goodness-of-fit measure, it also favors the results from Part 1. However, the 
A-optimality criterion, which measures the overall parameter uncertainty, clearly indicates 
that the parameter set from Part 1 is highly ambiguous as compared with the results ob-
tained in Parts 2 and 3. The relatively larger 2

0s -value for Part 3 is a result of actual 
measurement noise; the standard deviation of the residuals is larger compared with the one 
of Part 1 despite a smaller bias. According to the A-optimality criterion, Part 2 is an 
improvement over Part 1. Part 3 performs significantly better than Part 2 with respect to all 
criteria. This overall performance makes the results from Part 3 the preferred solution. This 
inversion resulted in a very good match devoid of systematic errors, and yielded accurate 
estimates. The discussion also shows, however, that an inversion cannot be judged based 
on a single criteria such as 2

0s  or Kashyap, but that the overall performance should be 
evaluated.  
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4. PROBLEM 3:  CALIBRATION OF GEOTHERMAL  
 RESERVOIR MODEL 
 
4.1 Problem Statement 
 
In Problem 3, six parameters characterizing the hydraulic, thermophysical, geometric, and 
natural state conditions of a fractured geothermal reservoir are determined based on 
synthetic data—pressures, temperatures, vapor and liquid flow rates—obtained from the 
simulation of steam production and cold water injection. 
We consider a two-dimensional five-spot production-injection problem (Figure 4.1.1) 
previously studied by Pruess [1991a] and Pruess and Wu [1993]. The problem 
specifications correspond to conditions typically encountered in deeper zones of two-phase 
geothermal reservoirs. The medium is assumed to be fractured with embedded imper-
meable matrix blocks in the shape of cubes with side lengths of 50 m. The permeable 
volume fraction is 2% with a porosity of 50% for the fracture domain. Reservoir thickness 
is 305 m. Water with an enthalpy of 500 kJ/kg is injected at a rate of 30 kg/s. Production 
rate is also 30 kg/s. 
 

 
Figure 4.1.1. Five-spot well pattern with grid for modeling 1/8 of symmetric domain. 
Observation points and type of data measured are also indicated. 
 
We assume that temperature and pressure measurements are taken in the injection (Inj) and 
production well (Pro), and in two abandoned wells (W1, W2; see Figure 4.1.1). 
Furthermore, liquid and vapor flow rates are measured in the production well. Note that 
temperature and pressure measurements are redundant as long as two-phase conditions 
prevail. TOUGH2 is run in forward mode to generate synthetic data for five years of field 
performance history, and random noise is added to simulate measurement errors (see Table 
4.1.1 for standard deviations). 
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Table 4.1.1. Observations Used for Model Calibration 
Data Type Location Std. Dev. 
Pressure Inj/Pro/W1/W2 2.00 bar 
Temperature Pro/W1/W2 5.00 ºC 
Liquid flow rate Pro 1.60 kg/s (~5 %) 
Vapor flow rate Pro 0.08 kg/s (~5 %) 
 
 
Table 4.1.2. True, Initial, and Estimated Parameter Set 
Parameter True 

Value 
Initial 
Guess 

Best 
Estimate 

log (perm. [m2]) -14.22 -13.0 -14.22 
fracture porosity [-] 0.50 0.3 0.44 
specific heat [J/kg ºC] 1000.00 800.0 1010 
heat cond. [W/m ºC]  2.10 2.5 3.2 
fracture spacing [m] 50.00 20.0 62 
temperature [ºC] 300.00 250.0 300.23 
 
 
The model is automatically calibrated against these observations in order to determine the 
permeability of the fracture system, the porosity of the fracture continuum, the heat 
conductivity, the specific heat of the rock grains, fracture spacing (which is a parameter of 
the MINC preprocessor), and the initial reservoir temperature. The true parameter values 
used to generate the synthetic data are shown in Table 4.1.2. As in Problem 2.1, the strong 
parameter correlations make the inversion sensitive to any type of errors in the model or the 
data. 
 
4.2 Automatic Parameter Selection 
 
The parameters to be estimated here are very different in terms of magnitude and physical 
meaning. Furthermore, some parameters are very sensitive (e.g., initial reservoir tempera-
ture and permeability), while others are not sensitive (e.g., fracture porosity and rock 
specific heat) or highly correlated (e.g., fracture spacing and heat conductivity). Given this 
disposition, it seems reasonable to first estimate only the most sensitive parameters to 
improve the match, and continuously add parameters that are less sensitive or more highly 
correlated. If parameters of low sensitivity are estimated simultaneously with parameters of 
very high sensitivity, the former tend to be changed drastically according to their 
correlations with the latter. This may lead to parameter combinations that are physically not 
reasonable, causing difficulties in the flow simulation. iTOUGH2 offers an automatic 
parameter selection procedure that makes the inversion both faster and more stable. Figure 
4.2.1 shows the corresponding block of the iTOUGH2 input file. The selection criterion 
used here examines the potential of a parameter to reduce the objective function S : 

 S∂=δ  (4.2.1) 
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Here, S∂  is the change of the objective function if the parameter is perturbed by a small 
value (typically 1% of the parameter). Normalizing to the maximum value maxδ  yields the 
selection criterion ω : 
 

 10
max

≤<= ω
δ
δ

ω  (4.2.2) 

 
Those parameters with an ω -value larger than 05.0=rsens , i.e., the most sensitive 
parameters, are selected. Parameters unlikely to significantly reduce the objective function 
are (temporarily) excluded from the optimization process. If a negative value is given for 
rsens as in this example, the selection criterion is relaxed with each iteration k , and 
reaches zero for the last iteration K , i.e., all parameters are selected for the final step: 
 
 ( )Kkrsensrsensk /1−⋅=  (4.2.3) 
 
Due to the non-linearity of the inverse problem at hand, sensitivity coefficients change 
constantly during the optimization. Therefore, the selection criterion has to be reevaluated 
from time to time, i.e., parameters may be deactivated and reactivated during the course of 
an inversion. In this example, a full Jacobian matrix is calculated every third iteration, 
whereas only the derivatives with respect to the selected parameters are evaluated for 
intermediate iterations. 
 
Figure 4.2.2 shows the set of active (or activated) and inactive (or deactivated) parameters 
after 3=k  iterations. At this point, permeability is the most sensitive parameter. Initially, 
reservoir temperature was by far the most sensitive parameter. It has been updated during 
the first two iterations to be close to the true value. From then on, only minor 
improvements of the fit can be obtained by changing reservoir temperature, and other 
parameters such as permeability become more important. Specific heat has not been active 
for the first two iterations, but has been added to the vector of parameters to be updated for 
the third iteration because its sensitivity criterion 0446.0=ω is larger than the critical value 

3rsens  which has been relaxed from initially 0.05 to 0.0389. Note that overall parameter 
correlation (or independence) could be used as an additional criterion. 
   
 
 > COMPUTATION 
   >> OPTION 
      >>> automatic parameter SELECTION 
          >>>> revisit all parameters every :  3    ITERATIONS 
          >>>> SENSITIVITY criterion  rsens : -0.05 
          <<<< 
      <<< 
   << 
 < 
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Figure 4.2.1. Excerpt from file sam3p1i for automatic parameter selection. 
 

 -------------------------------------------------------------------- 
                   Automatic Parameter Selection 
 -------------------------------------------------------------------- 
     Parameter       Rel. Sensitivity     Independence         Status 
     Critical Value           .0389            .0000 
 -------------------------------------------------------------------- 
   1 PERMEABILITY            1.0000 +          .8977           active 
   2 POROSITY FRACT           .0001 -          .9160         inactive 
   3 SPECIFIC HEAT            .0446 +          .7588        activated 
   4 HEAT COND.               .0005 -          .1475         inactive 
   5 FRACT. SPACING           .0028 -          .1415         inactive 
   6 RESERVOIR TEMP.          .2557 +          .8999           active 
 -------------------------------------------------------------------- 
 

Figure 4.2.2. Excerpt from file sam3p1i.out, showing selection criteria for third  
iteration. 
 
Table 4.2.1. Estimation Error, Correlation, and Sensitivity 
 
Parameter 

 
pσ  

 
pp σσ /*  ∑

=

⋅
∂

∂m

i z

pi

i
p
z

1 σ

σ
 

log (perm. [m2]) 0.002 0.91 1792 
fracture porosity [-] 0.09 0.87 16 
specific heat [J/kg ºC] 36 0.13 61 
heat cond. [W/m ºC]  0.62 0.015 38 
fracture spacing [m] 6.6 0.04 217 
temperature [ºC] 0.11 0.84 368 
 
A total of 10 iterations have been performed to arrive at the best-estimate parameter set 
shown in Table 4.1.2. The estimation uncertainty as well as measures of total parameter 
correlation, pp σσ /*  (discussed in Section 3), and total parameter sensitivity are given in 
Table 4.2.1. A comparison of the estimated and the true parameter set reveals that 
permeability and reservoir temperature are accurately identified. They are the most 
sensitive parameters and can be determined almost independently, as indicated by the ratio 
of the conditional and the marginal standard deviation, which is close to 1. The estimates of 
fracture spacing, heat conductivity and specific heat exhibit relatively high standard 
deviations, which are easily explained by the large correlation coefficients among these 
three parameters. Especially fracture spacing and heat conductivity have a high positive 
correlation coefficient, i.e., a larger fracture spacing can be almost completely compensated 
by an increase in heat conductivity. This statement is true for the type and amount of data 
available, i.e., the correlation between these two parameters may be reduced by taking addi-
tional data (e.g., temperature measurements within the matrix at a known distance from the 
fracture). Finally, the low sensitivity of fracture zone porosity precludes an accurate 
determination of this parameter, despite its favorable correlation structure. 
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4.3 Calibration Results and Total Sensitivity 
 
The system response in the injection, production, and observation wells is shown in Figure 
4.3.1. The squares are the synthetically generated and perturbed data points used to 
calibrate the model. The triangles represent the future system response for the true 
parameter set. The solid lines are the pressures, temperatures, water and vapor flow rates 
simulated using the estimated parameter set. For the first 5 years, the deviations between 
the solid lines and the squares minimize the objective function. Beyond 5 years, the solid 
lines are predictions, i.e., an extrapolation of the system response matched during the 
calibration period. The model predictions are uncertain due to uncertainties in the estimated 
parameters. The standard deviation of the calculated system response, i.e., the uncertainty 
of the predicted temperature in the production well at a certain point in time, is calculated 
using linear uncertainty propagation analysis (see file sam3p2i for details). The resulting 
95% error bands on the model predictions are shown as dash-dotted lines in Figure 4.3.1. 
They have to be considered optimistic because only the uncertainties of the six selected 
parameters are taken into account. All the other parameters as well as the model structure 
are assumed to be exactly known. The true system response (triangles) lies within the 
estimated error band, despite the fact that the parameter set used for the prediction does not 
exactly correspond to the true one (Table 4.1.2). 

The high accuracy of the model prediction can only be achieved by a combined inversion 
of all available data. It is obvious that the temperature decrease in observation well W1 
could not have been predicted by relying only on temperature data during the calibration 
phase. In our case, the contribution of temperature measurements to the determination of 
the parameter set is minor. This is mainly due to the fact that a temperature change of 1 ºC 
leads to a vapor pressure change of about 1 bar that can be more easily detected given the 
assumed accuracy of pressure measurements. Provided that the expected measurement 
errors (see Table 4.1.1) are reasonable, the bulk of the information about the parameters of 
interest is contained in the accurate vapor flow rate measurements and the pressure data in 
the production well. An approximate measure of the contribution of a certain observation 
(e.g., flow rate data of a given accuracy taken over the entire measurement period) to the 
solution of the inverse problem can be evaluated by adding all the absolute values of the 
corresponding sensitivity coefficients, weighted by the expected measurement error and 
scaled by the inverse of the parameter variation. This qualitative measure is summarized in 
Table 4.3.1. Comparing total sensitivities of individual observations, one can conclude that 
accurate measurements of vapor flow rates and pressures and temperatures in the injection 
and production wells would be sufficient to solve the inverse problem, i.e., data from the 
observation wells are less sensitive in our example. This kind of an analysis can be 
performed without actually collecting data, i.e., it can be used to design and optimize 
monitoring systems. The standard deviations of the final residuals (Table 4.3.1) are on the 
order of the (assumed) measurement errors (Table 4.1.1), indicating that no significant 
systematic errors are present. Finally, the contribution of each observation type to the final 
value of the objective function is evenly distributed among the measurements, again 
rendering the choice of the prior errors reasonable.  
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Figure 4.3.1. Calibration and prediction of pressures, temperatures, water and vapor flow 
rates. Squares are synthetic data points used for calibration. Triangles represent the true 
system response. Simulation results based on the estimated parameter set are shown as 
solid lines. Error bands (dash-dotted lines) are calculated using linear uncertainty propaga-
tion analysis. 
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Table 4.3.1. Total Sensitivity of Observations, Standard Deviation 
of Residuals, and Contribution to Objective Function (COF) 

Observation  Total 
Sensitivity 

Std. Dev. 
of Residuals COF [%] 

Pressure Inj. [bar]  307 1.5 6.2 
Pressure Pro. [bar]  677 1.9 10.5 
Pressure W1 [bar]  126 2.2 13.2 
Pressure W2 [bar]  91 2.1 12.2 
Temp. Pro. [ºC]  307 4.5 9.6 
Temp. W1 [ºC]  27 5.4 12.9 
Temp. W2 [ºC]  20 5.0 11.8 
Water flow rate [kg/s]  45 0.2 11.1 
Vapor flow rate [kg/s]  891 0.01 12.6 
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5. PROBLEM 4: MULTISTEP DESATURATION EXPERIMENT 
 
 
5.1 Introduction 
 
Figure 5.1.1 shows a schematic of a flow cell designed for conducting radial desaturation 
experiments on soil samples. The vacuum applied at the central ceramic extraction cylinder 
can be adjusted in discrete steps. The apparatus is instrumented with a vial to measure the 
cumulative water discharge through the central cylinder, and a tensiometer for water 
potential measurements within the soil sample. The experiment was performed by B. 
Faybishenko (for more details, see Finsterle and Faybishenko [1997]). 
 

 
Figure 5.1.1. Schematic of apparatus for radial flow experiment to determine unsaturated 
hydraulic properties. 
 
 
Neglecting the minor effects of gravity, a one-dimensional radial model was developed, 
and EOS9 was used to solve Richards' equation during the stepwise desaturation of the 
core. 
We analyze radial desaturation experiments performed on a soil of clay loam with a dry 
density of about 1.5 g/cm3, and a porosity of 0.48. The cumulative water discharge through 
the ceramic extraction cylinder and the water potential near the outer wall of the flow cell 
are used to estimate permeability, pore size distribution index, and air entry pressure. 
 

water  
collection 

vial

air inlet

ceramic extraction cylinder

tensiometer

soil sample

vacuum 
pump

ai
r r

es
er

vo
ir

15 cm

22
 c

m



_________________________________________________________________________ 
iTOUGH2 SAMPLE PROBLEMS 48 PROBLEM 4 
 

The estimated parameter values will depend on the functional model used to describe 
capillary pressure and relative permeability. The estimate of absolute permeability is 
influenced by the choice of the characteristic curves because permeability is concurrently 
determined and thus correlated to the parameters of the capillary pressure and relative 
permeability functions. Therefore, it is crucial to identify the functional model that best 
represents the true conditions. We consider two models to describe the capillary pressure 
and relative liquid permeability as a function of liquid saturation lS . The Brooks-Corey-
Burdine (BC) model [Brooks and Corey, 1964] is given by: 
 
 λ/1−⋅−= eec Spp  (5.1.1) 

 

 λ
λ32+

= er Sk  (5.1.2) 

 
Here, ep and λ  are fitting parameters sometimes referred to as air entry pressure (AEP) 
and pore size distribution index (PSDI), respectively. The effective liquid saturation eS  is 
defined as 

 
lr

lrl
e S

SS
S

−

−
=
1

 (5.1.3) 

 
where lrS  is the residual liquid saturation. The Brooks-Corey model is invoked by 
selecting IRP=ICP=10; the TOUGH2 input for this sample problem with the BC model is 
on file sam4. 
As an alternative to the BC model, the data were also analyzed using the van Genuchten 
model (VG) [van Genuchten, 1980]: 
 

 ( ) nm
ec Sp

/1/1 11
−−= −

α
 (5.1.4) 

 

 ( )[ ]2/12/1 11
mm

eer SSk −−=  (5.1.5) 

where 

 
n

m 11−=  (5.1.6) 

 
For convenience, and based on a weak analogy to the BC model described by Morel-
Seytoux et al. [1996], we will refer to parameter n  as the pore size distribution index, and 
α/1  as the air entry pressure. The van Genuchten model is invoked by selecting 

IRP=ICP=11. 
While the two models, BC and VG, exhibit only minor differences in the capillary pressure 
function for intermediate and low liquid saturations, the system behavior differs near full 
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saturation. Because cumulative outflow data contain a significant contribution from the 
drainage of the larger pores, the two models are expected to perform differently when 
calibrated against the observed outflow and capillary pressure measurements. 
In this sample problem, we demonstrate how step changes in the boundary conditions are 
specified, and how the objective function can be evaluated on a regular grid. We also 
discuss the use of prior information and model identification criteria. 
 
 
5.2 Specifying step changes in boundary condition 
 
In this experiment, the capillary suction in the central extraction cylinder is changed in 
discrete steps during the experiment. For an inversion of the entire test sequence, changes 
in the boundary conditions have to be performed automatically. A linear capillary pressure 
function was chosen that provides the desired capillary pressure between 0 and -100 kPa as 
a function of liquid saturation, which is the primary variable to be changed using the 
RESTART option in the iTOUGH2 input file as shown in Figure 5.2.1.  
 
 
 
 > OBSERVATIONS 
 
   >> calibration TIMES: 2 [DAYS] 
      0.001 0.1  
 
   >> RESTART TIME: 1 [DAYS]  
      0.1       
      A1__1 1  0.95 (reduces initial liq. sat. in element A1__1 to 0.95, 
      invoking a capillary force of -5 kPa for second step. 
 
   >> calibration TIMES: 4 [DAYS] 
      0.25 0.5 0.75 1.1 
 
   >> RESTART TIME: 1 [DAYS] 
      1.1 
      A1__1 1  0.90 (reduces initial liq. sat. in element A1__1 to 0.90, 
      invoking a capillary force of -10 kPa for third step. 
   ... 
   

Figure 5.2.1. Excerpt from iTOUGH2 input file sam4i, showing block TIMES with 
RESTART option for changing saturation boundary condition. 
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5.3 Minimization Algorithms 
 
As will be verified later, the inverse problem of concurrently estimating permeability, pore 
size distribution index, and air entry pressure using capillary pressure and cumulative flow 
rate data from a multistep desaturation experiment has a unique solution, and no local 
minima exist in the region bounded by the admissible range of parameter values specified 
in the iTOUGH2 input file. Given these favorable conditions, any of the minimization 
algorithms implemented in iTOUGH2 should converge to the same solution regardless of 
the starting point chosen. The different minimization algorithms can be selected simply by 
pointing the command level marker to the desired option (see Figure 5.3.1). The maximum 
number of iterations could be set to a very large number to trigger one of the internal 
stopping criteria. However, a satisfying solution is usually obtained within fewer iterations. 
A comparison of the five minimization algorithms currently implemented in iTOUGH2 is 
given in Table 5.3.1. Note that the performance of each method depends strongly on the 
problem considered. Furthermore, each of the algorithms could be made more efficient by 
adjusting some of the method-dependent parameters and convergence criteria. No such 
fine-tuning has been performed here. Nevertheless, the following observations can be 
made:   
 
 
 
> COMPUTATION 
 
  >> STOPPING criterion  
     >>> maximum number of ITERATIONS  : 1000 
     >>> maximum number of UPHILL moves:    5 
 
  >> OPTIONS 
 
     /* select minimization algorithm here by moving the  
     command level marker '>>>' or disabling comment markers */ 
 
         GAUSS-NEWTON 
     >>> LEVENBERG-MARQUARDT 
         downhill SIMPLEX method 
         GRID SEARCH - divide parameter space into : 9 9 9 intervals, 
                       i.e., evaluate o.f. at 10*10*10=1000 points  
 /*  >>> SIMULATED ANNEALING 
         >>>> initial TEMPERATURE         : -0.01  
         >>>> update after a maximum of   : 50 STEPS 
         >>>> annealing SCHEDULE          : 0.95   
         >>>> maximum number of ITERATIONS: 1000 
         <<<< /* 
     <<< 
  << 
< 
    

Figure 5.3.1. Excerpt from iTOUGH2 input file sam4i, showing block OPTIONS with 
different minimization algorithms available.  
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Table 5.3.1. Comparison of Minimization Algorithm Efficiency 
Minimization Algorithm Number of 

Iterations 
Number of 

TOUGH2 Runs 
Stopping Criterion 

Levenberg-Marquardt 4 25 too many uphill steps 
Gauss-Newton 4 21 unsuccessful step 
Downhill Simplex 97 184 function tolerance 
Simulated Annealing 121 4019 no successful move  
Grid Search - 1000 - 
 
 
All five minimization algorithms identify the global minimum. The difference in efficiency 
is best measured by the total number of TOUGH2 simulations required. For this inverse 
problem, the Levenberg-Marquardt algorithm is the most efficient method, followed by the 
Gauss-Newton method. The downhill simplex algorithm requires significantly more 
TOUGH2 simulations than the derivative-based methods. The situation may be improved if 
a larger initial simplex is specified that encompasses the minimum. Simulated Annealing as 
a random sampling technique is inefficient in this case, and its advantages over the other 
algorithms are not required here. Finally, a systematic evaluation of the objective function 
in the entire three-dimensional parameter space provides a complete description of the 
topology around the minimum. However, even for a moderate resolution of 10% of the 
admissible parameter range, as many as 1000 TOUGH2 solutions have to be calculated. 
Figure 5.3.2 shows contour plots of the objective function in three orthogonal parameter 
planes through the minimum. The plot was created from a subset of the data produced by 
the grid search method. The shape, size, orientation, and convexity of the minimum 
provides information about the uniqueness and stability of the inversion, and represents the 
uncertainty and correlation structure of the estimated parameter set. Furthermore, the 
presence or absence of local minima can readily be detected. Recall, that the gradient-based 
minimization algorithms rely on the local examination of the objective function and its 
derivative, and the linear error analysis is based on the local approximation of the curvature 
of the objective function at the minimum. 
Also depicted in Figure 5.3.2 is the projection of the solution path taken by the Levenberg-
Marquardt algorithm that identifies the minimum within a few iterations. 
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Figure 5.3.2. Contours of the objective function in the three parameter planes: (a) 

)log( absk - )log( ep , (b) )log( absk -λ , and (c) λ - )log( ep . The solution path taken by the 
Levenberg-Marquardt minimization algorithm is shown as a bold line. 
 
 
 
5.4 Model Identification and Prior Information 
 
Both the Brooks-Corey (BC) and van Genuchten (VG) model have been calibrated against 
the capillary pressure and cumulative flow rate data from the multistep desaturation experi-
ment. The results of the inversions performed with the Gauss-Newton algorithm are 
summarized in Table 5.4.1. The match obtained for the BC model is illustrated in Figure 
5.4.1; an almost identical match was obtained with the VG model, indicating that the data 
does not contain sufficient information for a definite identification of the conceptual model. 
Note that the estimated permeability value strongly depends on the selected characteristic 
curves. The VG model requires a significantly larger absolute permeability to match the 
outflow data. Estimating a high permeability seems necessary to compensate for the sharp 
decline of the relative permeability curve near full saturation. 
 
 
Table 5.4.1. Inverse Modeling Results for the Brooks-Corey and van Genuchten Models. 

Model Parameter Estimate Std. Dev. 

Brooks-Corey ])[m log( 2k  -13.11 0.05 
 ])[Pa log( ep  2.98 0.03 
 λ  0.10 0.002 

van Genuchten ])[m log( 2k  -11.44 0.10 
 ])[Pa /1log( α  3.14 0.04 
 n  1.11 0.004 

File Name : MSs.of.eps
Creator :  TECPLOT
Pages : 1
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Figure 5.4.1. Comparison between observed (symbols) and simulated (lines) system 
response for the multi-step radial flow experiment. The prescribed suction pressure at the 
extraction cylinder is shown as a dashed line. 
 

 
Figure 5.4.2. Relative permeability function derived by inverse modeling for the Brooks-
Corey and the van Genuchten model. 

File Name : MS.pc.cum.eps
Creator :  TECPLOT
Pages : 1

File Name : char_kr.eps
Creator :  TECPLOT
Pages : 1
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Figure 5.4.2 shows the BC and VG relative permeability functions for the respective best 
estimate parameter sets. Despite the large gap between the two curves, the resulting 
effective permeabilities, which determine the transient flow behavior, are very similar. To 
illustrate this, the VG relative permeabilities are multiplied with the ratio of the estimated 
absolute permeabilities, yielding almost identical effective permeabilities over the range of 
saturations encountered during the experiment. 
The fact that no definitive decision can be made regarding the appropriateness of either the 
BC or the VG model is an important finding of this analysis. The result becomes more 
conclusive if prior information about the absolute permeability is introduced. If an indepen-
dently obtained permeability value is available, this information can be included in the 
inversion by assigning a penalty to the difference between the prior value and the estimate. 
In iTOUGH2, this is achieved by replacing the keyword VARIATION by DEVIATION 
in the corresponding parameter block. The standard deviation to be specified reflects the 
relative weight between prior information on one side and the pressure and flow rate data 
on the other side. If a very accurate permeability measurement is available, this parameter 
may be excluded from the inversion altogether. If the prior value is uncertain, permeability 
should be allowed to vary during the inversion according to its relative weight. If the prior 
permeability value tends to be low, the Brooks-Corey model is likely to perform 
significantly better than the van Genuchten model, and vice versa. 
Finally, if an independent permeability measurement is unavailable, the permeability value 
concurrently estimated by inverse modeling partly compensates for the error in the model, 
making the predictions more accurate. 
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6. PROBLEM 5:  COMBINED INVERSION OF  
 STEADY-STATE AND TRANSIENT DATA 
 
6.1 Introduction 
 
Many simulations of transient events assume that the system is initially at equilibrium, 
from which it evolves after applying a perturbation. Equilibrium conditions are usually 
obtained by running the model to steady state in a calculation separate from the transient 
simulation. Steady-state conditions, however, may depend on one or more of the 
parameters that are to be estimated using the transient data. Furthermore, one might want to 
concurrently calibrate against steady-state data representing the natural state, and transient 
data from the test response. Note that the simulation time needed to reach steady state is 
usually unknown and may change if the parameter set is updated. 
iTOUGH2 allows one to perform inversions that require a steady-state run followed by a 
transient simulation. Once a simulation is terminated by one of the criteria suggesting that 
steady state has been reached, calibration against the steady-state data points is performed, 
the time is set to zero, and a second run is invoked for matching the transient test response 
(Figure 6.1.1). The primary variables at the end of the steady-state period are stored on file 
SAVE and can be used as initial conditions for the following TOUGH2 simulation, which is 
expected to perform similarly because only one or a few parameters will be updated, i.e., 
steady state is expected to be reached within a few time steps. 
 
 

 
 
Figure 6.1.1. Combining a steady-state run with a subsequent transient simulation. 
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Besides demonstrating the combined inversion of steady-state and transient data, this 
sample problem was also designed to address a number of additional, less frequently used 
iTOUGH2 features such as: 
- Specifying time-dependent Dirichlet boundary conditions 
- Performing combined inversions of data from multiple boreholes 
- Estimating an unknown constant added to the observed data 
- Adjusting units of data to standard TOUGH2 units including shifts 
- Specifying a constant perturbation for calculating derivatives 
- Using keyword SAVE to speed up a series of steady-state simulations 
- Using time windows 
 
6.2 The Forward Problem 
The forward problem consists of simulating steady-state water percolation in two one-
dimensional columns representing boreholes drilled into a thick unsaturated zone. The 
steady-state run is followed by a transient simulation of atmospheric pressure fluctuations 
that propagate from the land surface through several hydrogeologic layers to the water 
table. 
Performing a steady-state run prior to a transient simulation is indicated by the iTOUGH2 
command >>> STEADY-STATE (see Figure 6.3.1), and by setting the starting time of 
the simulation (TOUGH2 variable TSTART) to a large negative number ∞− t . The 
absolute value ∞− t  must be larger than the duration required to reach steady state, e.g., 

2010−=− ∞t seconds. The TOUGH2 simulation proceeds until a convergence failure occurs 
at an unknown point in time cft . This is considered the steady-state solution to be matched 
to steady-state data. The primary variables at that point are written to file SAVE, which is 
used as the file with initial conditions for the subsequent TOUGH2 simulation (see Figure 
6.1.1). The simulation time is then set to zero, and the transient simulation is started. This 
requires that the atmospheric pressure fluctuations are initiated as time-varying boundary 
conditions at time zero. This is achieved by providing code in subroutine USERBC (file 
it2user.f), part of which is shown in Figure 6.2.1. Note that the two boundary elements  
(TPA80 and TPC10) representing the land surface for the two columns must be active, 
i.e., they should have a large gridblock volume of 1050m3 rather than a zero volume. In the 
first part of the subroutine, the data are read from file atmos.dat and stored in the three 
arrays DTIME, DVALUE1, and DVALUE2. In the second part of the subroutine, the 
atmospheric pressure at time TIME is linearly interpolated between two observed values 
and assigned to the first primary variable X(1). Note that variable MOP(22) is set to 1, 
and that the data file atmos.dat has to be given on the command line as follows:  
 

 itough2 -fi atmos.dat sam5i sam5 3 & 
 

Command option -fi copies the specified file to the temporary directory.  
 
We mention here that the user should not specify time-dependent Dirichlet boundary 
conditions that involve a phase change associated with primary variable switching. 
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************************************************************************ 
      SUBROUTINE USERBC(N,CELEM,VOLUME,TIME,X) 
************************************************************************ 
* User specified boundary condition                                    * 
* Set MOP(22).GE.1 to invoke this subroutine                           * 
*     MOP(22)=1 don't call EOS                                         * 
*     MOP(22)=2 call EOS                                               * 
* Return user specified boundary condition (vector X) for element      * 
* CELEM and time TIME                                                  * 
************************************************************************ 
C 
C$$$$$$$$$ PARAMETERS FOR SPECIFYING THE MAXIMUM PROBLEM SIZE $$$$$$$$$$ 
      INCLUDE 'maxsize.inc' 
C 
C$$$$$$$$$ COMMON BLOCK FOR PROBLEM TITLE $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
      INCLUDE 'title.inc' 
 
      DIMENSION X(MAXEQ) 
      CHARACTER CELEM*5, FILENAME*40 
 
      PARAMETER (MDATA=2000) 
 
      DIMENSION DTIME(MDATA),DVALUE1(MDATA),DVALUE2(MDATA) 
  
      SAVE DTIME,DVALUE1,DVALUE2 
      IREAD/0/,I/0/ 
  
      IF (TITLE(:4).EQ.'sam5') THEN 
         IF (IREAD.EQ.0) THEN 
C --- Read table from a file 
            IREAD=IREAD+1 
            FILENAME='atmos.dat' 
            OPEN(UNIT=39,FILE=FILENAME,STATUS='OLD') 
C --- Skip one header line 
            READ(39,*) 
 1001       I=I+1 
            READ(39,*,END=1002) DTIME(I),DVALUE1(I),DVALUE2(I) 
            GOTO 1001 
 1002       CONTINUE 
            NDATA=I-1 
            CLOSE(39) 
            RETRUN 
         ENDIF 
         IF (CELEM.EQ.'TPA80') THEN 
            CALL INTERP1(TIME,X(1),DTIME,DVALUE1,NDATA) 
         ELSE IF (CELEM.EQ.'TPC10') THEN 
            CALL INTERP1(TIME,X(1),DTIME,DVALUE2,NDATA) 
         ENDIF 
      ENDIF 
      END 
 

Figure 6.2.1. Excerpt from subroutine USERBC for assigning atmospheric pressure 
fluctuations as user-specified boundary conditions. 
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6.3 The Inverse Problem 
 
Profiles of saturation and water potentials believed to represent steady-state conditions are 
available from two boreholes. Furthermore, pneumatic pressures are recorded at five 
locations within the two boreholes. Calibration occurs at time zero (for steady-state data) 
and at time intervals of 6 hours (for the pneumatic data).  
The profiles of steady-state saturation and water potentials require specifying individual 
data sets for each measured data point. Each set refers to the element at the appropriate 
elevation. The steady-state measurement is assigned to time zero, and a small time window 
is opened, so that calibration occurs at time zero only. This triggers a warning message 
because the single value is automatically extrapolated over the range of the time window. 
Water potentials are given as positive numbers in bars, and are converted to negative 
capillary pressures (the units used by TOUGH2) by specifying a multiplication factor 
of -105. The standard deviation refers to log-cycles because calibration occurs against the 
logarithm of the observed water potential. 
The pneumatic data are provided on external files rather than in the iTOUGH2 input file. 
The times in the input file are shifted so they match the simulation time, and a time window 
in the shifted time system is specified, indicating the period for which data are available. 
Figure 6.3.1 contains an excerpt from the iTOUGH2 input file, showing block 
> OBSERVATION with an example of each observation type. 
Block > PARAMETER is discussed next. We are primarily interested in estimating 
absolute permeability for each hydrogeologic layer. It is important to note that the observed 
saturations and water potentials are strongly affected also by the parameters of the capillary 
pressure and relative permeability functions, and the pneumatic pressure response is 
governed by gas diffusivity, which includes porosity. To make this sample problem 
solvable in a reasonably short time, we fix these parameters and concentrate on absolute 
permeability. 
Information about the absolute permeability is contained in the time lag and attenuation of 
the pneumatic pressure data, rather than in the absolute value of the observed gas pressure. 
If the mean pressure at a given elevation is not accurately reproduced by the model, a 
systematic error is introduced. Since an error in the mean pressure affects all data, the 
parameters will be adjusted as to minimize the differences in the mean pressure rather than 
match the time lag and attenuation of the pressure fluctuation. In order to avoid biased 
estimates, we consider the mean pressure as an additional parameter to be estimated, i.e., 
we allow the pressure data to be shifted by an unknown constant value. The corresponding 
iTOUGH2 input block is reproduced in Figure 6.3.2. The initial guess for the data shift is 
taken from a visual inspection of the match obtained with the initial parameter set. It is not 
weighted in the objective function. On the other hand, the initial permeability estimates are 
based on core data and are thus weighted as prior information by specifying the respective 
standard deviations. 
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 > OBSERVATIONS 
 
   >> TIMES: 1 
      0.0    
      for steady-state data 
          
   >> TIMES (EQUALLY spaced): 481 [DAYS] 
      120.0 240.0 
      for transient data 
 
   >> Pneumatic PRESSURE data 
 
 Data from borehole #1 are shifted in time so that the data from 12/1/95 
 to 12/31/95 are matched to simulation times 150 days to 180 days. 
 
      >>> ELEMENT: FcC10 
          >>>> ANNOTATION: BH#1/N Tpcplnc 1258.2 [masl] 
          >>>> TIME SHIFT: -32928.0          [HOURS] 
          >>>> FACTOR    : 1000.0            [kPa] - [Pa] 
          >>>> DATA FILE : N.dat             [HOURS] 
          >>>> DEVIATION :    0.1            [kPa] 
          >>>> TIME WINDOW: 36528.0 37248.0  [HOURS] 
          <<<< 
      ... 
      <<<   
 
   >> LIQUID SATURATION 
      >>> ELEMENT        :    MaA80 
          >>>> ANNOTATION: LIQ. A80 tcwM1 
          >>>> DATA [lay midpt = 1340.65,   33 pt(s)] 
               0.0        .907000E+00 
          >>>> DEVIATION:    .750E-01 
          >>>> WINDOW   :    -1.0 1.0 
          <<<< 
      ... 
      <<< 
   
   >> CAPILLARY PRESSURE 
      >>> ELEMENT        :    MaA80 
          >>>> ANNOTATION: CAP. A80 tcwM1 
          >>>> FACTOR    :   -0.100000E+06 
          >>>> LOGARITHM 
          >>>> DATA [lay midpt = 1340.65,   33 pt(s)] 
               0.0       0.310900E+01 
          >>>> DEVIATION:   0.607 
          >>>> WINDOW   :    -1.0 1.0 
          <<<< 
      ... 
      <<< 
   << 
  

Figure 6.3.1. Excerpt from iTOUGH2 input file sam5i showing blocks with pneumatic 
pressure, saturation, and water potential data. 
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 > PARAMETER 
 
   >> SHIFT of pneumatic data 
      >>> SET No.        : 1 
          >>>> ANNOTATION: BH#1/N Mean pneum. 
          >>>> GUESS     : 950.0  [Pa] 
          >>>> PERTURB   :  -1.0  [Pa] 
          >>>> VARIATION : 100.0  [Pa] 
          >>>> VALUE 
          <<<< 
      ... 
      <<< 
 
   >> ABSOLUTE permeability 
      >>> ROCK type: tcwF1 
          >>>> LOGARITHM 
          >>>> DEVIATION :   0.61 
          >>>> RANGE     : -15.0   -9.0 
          <<<< 
      ... 
      <<< 
   << 
 

Figure 6.3.2. Excerpt from iTOUGH2 input file sam5i showing block for the estimation of 
a constant added to the pneumatic pressure data. 
 
The SHIFT parameter refers to a data set identified by its ordering number in block 
OBSERVATION. A negative number is given for variable PERTURB, i.e., a constant value 
of 1 Pa is used to numerically calculate the derivatives. This is preferred over the default 
relative perturbation because the size of the constant shift is arbitrary. Furthermore, if 
parameters are automatically selected using the sensitivity criterion (see Eq. (4.1)), the 
change of the objective function can be appropriately adjusted for this special parameter 
type. 
We finally look at the block with the computational parameters (Figure 6.3.3). To save 
computer time, this sample problem is a restart of a previous inversion, and only one 
iteration will be performed. Command >>> STEADY-STATE (SAVE) allows 
TOUGH2 to run into a convergence failure, at which point conditions are assumed to be at 
steady state. Furthermore, the SAVE file will be transferred to the next TOUGH2 run and 
used as file INCON, holding the initial conditions. The final step size will be transferred as 
the initial time step size for the next run. This speeds up the simulation if only one 
parameter is perturbed during the calculation of the Jacobian matrix. However, if all the 
parameters are updated at the end of an iteration, the initial time step size may be too large. 
The maximum number of consecutive time step reductions is increased (see command 
>>> REDUCTION) to avoid a premature termination of the steady-state run. Automatic 
parameter selection is disabled, but may be useful if performing more iterations or 
estimating additional parameters. Due to the relatively large number of parameters, overall 
correlations are expected to be high. To ensure a stable progression during the 
optimization, the total scaled step size is limited to 0.2. Also, the initial value of the 
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Levenberg parameter is chosen to be relatively high. We allow the inversion to proceed 
despite the warning messages discussed earlier, which are understood not to affect the run. 
 
 

 > COMPUTATION 
 
   >> OPTION 
      >>> STEADY-STATE (SAVE) 
/*  
      >>> automatic parameter SELECTION 
          >>>> revisit after                     :  3 ITERATIONS 
          >>>> SENSITIVITY criterion             : -0.20 
*/        <<<< 
      <<< 
 
   >> STOPPING CRITERIA 
      >>> ignore WARNINGS 
      >>> number of ITERATIONS                   :  1 
      >>> maximum number of time steb REDUCTIONS : 30 
      >>> scaled total STEP size                 :  0.2 
      >>> initial value of LEVENBERG parameter   :  0.1 
#     >>> solve FORWARD problem 
      <<< 
 
   >> OUTPUT 
      >>> time units are DAYS 
      <<< 
 
  >> JACOBIAN 
      >>> FORWARD finite differences for first   : 15 iterations 
      >>> parameter PERTURBATION                 :  2.0 %  
      <<<  
   << 
 < 
 

Figure 6.3.3. Excerpt from iTOUGH2 input file showing block COMPUTATION. 
 
6.4 Sensitivity Measures and Residual Statistics 
 
The main purpose of this sample problem is to demonstrate iTOUGH2 input features. Since 
the formulation of the inverse problem is incomplete, the following short discussion is not 
meant to be an interpretation of the obtained results; it simply describes some of the 
measures found in the iTOUGH2 output file. 
Figure 6.4.1 shows the match of the pneumatic pressure data at three sensors in one of the 
boreholes. Note that the estimated parameter set also honors the pneumatics in the second 
borehole, the saturation and water potential profiles, as well as prior information about the 
permeabilities, i.e., a better match could be obtained if only pneumatic data in the first 
borehole were considered. Nevertheless, attenuation and time lag are well reproduced by 
the model. 



_________________________________________________________________________ 
iTOUGH2 SAMPLE PROBLEMS 62 PROBLEM 5 
 

 
Figure 6.4.1. Match of pneumatic pressures at three elevations in one borehole. 
 
 
 

 Sum of Sensitivity Coefficients 
 ------------------------------- 
 
 ----------------------------------------------------------------------------- 
 PARAMETER/OBSERVATION     TOTAL       VARIATION   SENS. OUTPUT  SENS. OBJ. F. 
 ----------------------------------------------------------------------------- 
 BH#1/N Mean pne:    0.13651E+01     0.10000E+03    0.13651E+03    0.50816E-02  
 BH#1/K Mean pne:    0.13314E+01     0.10000E+03    0.13314E+03    0.18175E+00  
 BH#1/D Mean pne:    0.13298E+01     0.10000E+03    0.13298E+03    0.19754E+00  
 BH#2/400' Mean :    0.13331E+01     0.10000E+03    0.13331E+03    0.15604E+00  
 BH#2/800' Mean :    0.13271E+01     0.10000E+03    0.13271E+03    0.19119E+00  
 ABS. K tcwF1   :    0.76501E+02     0.61000E+00    0.46666E+02    0.18777E+00  
 ABS. K tcwF2   :    0.76447E+02     0.61000E+00    0.46633E+02    0.25650E+00  
 ABS. K tcwF3   :    0.37872E+03     0.10000E+01    0.37872E+03    0.17095E+00  
 ABS. K ptnF1   :    0.13976E+03     0.38000E+00    0.53109E+02    0.12053E+00  
 ABS. K ptnF2   :    0.18306E+02     0.46000E+00    0.84208E+01    0.44222E-01  
 ABS. K ptnF3   :    0.53882E+02     0.38000E+00    0.20475E+02    0.77957E-01  
 ABS. K ptnF4   :    0.18664E+03     0.42000E+00    0.78389E+02    0.30260E+00  
 ABS. K ptnF5   :    0.14055E+03     0.38000E+00    0.53408E+02    0.93696E-01  
 ABS. K tswF1   :    0.29173E+02     0.10000E+01    0.29173E+02    0.54902E-01  
 ABS. K tswF2   :    0.38793E+02     0.66000E+00    0.25604E+02    0.88108E-01  
 ABS. K tswF3   :    0.15759E+02     0.67000E+00    0.10558E+02    0.72659E-01  
 ABS. K tswF4   :    0.71988E+02     0.56000E+00    0.40313E+02    0.53727E-01  
 ABS. K tswF5   :    0.85937E+02     0.54000E+00    0.46406E+02    0.47682E-01  
 ABS. K tswF6   :    0.12971E+03     0.34000E+00    0.44102E+02    0.10353E+00  
 ----------------------------------------------------------------------------- 
 

Figure 6.4.2. Excerpt from iTOUGH2 output file sam5i.out with sensitivity measures. 

File Name : BH1p.eps
Creator :  TECPLOT
Pages : 1
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Figure 6.4.2 shows an excerpt from the iTOUGH2 output file with the summary of the 
sensitivity measures for each parameter. The first column is the sum of the absolute values 
of the weighted sensitivity coefficients for each parameter: 
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The second column holds the expected parameter variation jp
σ . Multiplying (6.4.1) with 

jp
σ we obtain a dimensionless, aggregate measure of how sensitive the calculated system 
response is with respect to parameter j : 
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Scaling with 
jp

σ is necessary to make the sensitivity measures dimensionless and thus 

comparable with each other. While the magnitude of jΩ  is of little significance, the ratios 
indicate the relative importance of a given parameter with respect to the other parameters. 
Here, the permeability of layer tcwF3 has the largest overall impact on the calculated 
pneumatic pressures, saturations, and water potentials at the observation points.  

The last column in Figure 6.4.2 contains the sensitivity of the objective function with 
respect to the corresponding parameter: 

 
j

j p
S

∂
∂

=Ξ  (6.4.3) 

Note that the observed data do not enter the calculation of Ω , whereas they are part of the 
objective function used in the calculation of Ξ . The sensitivity ranking of parameters 
depends on the measure used. A parameter may highly influence the system response (high 
Ω ), but its impact on the objective function may nevertheless be insignificant (low Ξ ). 
This indicates that by changing the corresponding parameter, the match to a subset of the 
data can be improved, but it gets worse with respect to other data, i.e., the potentially high 
parameter sensitivity measured by (6.4.2) is not available for reducing the objective 
function. Note that a measure similar to Ξ  is used as the sensitivity criterion for automatic 
parameter selection (see Section 4.2). 
The sensitivity measures discussed here contain a subjective element through the use of the 
scaling factors iz

σ  and jp
σ . Therefore, only large differences in the Ω  and Ξ  can be 

considered significant. In this example (Figure 6.4.2), all parameters should be considered 
of comparable overall sensitivity. 
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 MEAN     : Mean of residuals = bias 
 MEDIAN   : Median of residuals 
 STD. DEV.: Root mean squared deviation of residuals from bias 
 AVE. DEV.: Mean absolute deviation of residuals from bias 
 SKEWNESS : Degree of asymmetry of residuals around bias 
 KURTOSIS : Relative peakedness of distribution 
 B/S      : Ratio of bias and standard deviation 
 C.O.F.   : Relative contribution to final objective function 
 
 ======================================================================================= 
 TYPE   POINTS    MEAN     MEDIAN  STD. DEV.  AVE. DEV. SKEWNESS KURTOSIS   B/S   C.O.F. 
 --------------------------------------------------------------------------------------- 
 PRIOR I. 19                                                                      5.20 % 
 PRES.   605-0.272E+01 -0.125E+02  0.893E+02  0.671E+02   0.799    1.798  0.030  83.72 % 
 CAP. P.  36 0.576E-02  0.408E-02  0.364E+00  0.286E+00   0.370   -0.040  0.016   2.91 % 
 SAT.     47 0.229E-01  0.442E-01  0.102E+00  0.761E-01   0.038    0.853  0.225   8.17 % 
 ======================================================================================= 
 

Figure 6.4.3. Excerpt from iTOUGH2 output file sam5i.out  with residual statistics and 
relative contribution to objective function for each observation type. 
 
Four different types of data have been used in this inversion: pneumatic pressures, satura-
tions, water potentials, and prior information about the parameters to be estimated. Figure 
6.4.3 shows an excerpt from the iTOUGH2 output file that provides statistics of the final 
residuals and the contribution of each observation type to the objective function. The mean 
of the residuals is close to zero for all observation types, indicating that the data are on 
average well matched, and that no significant trade-off between matching data of different 
types has occurred. The saturation residuals exhibit a slight bias, i.e., the mean of the 
residuals is relatively large (about 20%, see column B/S) compared with the standard 
deviation.  The final standard deviations are slightly smaller than the assumed measurement 
errors, leading to an estimated error variance smaller than 1.0.  
The last column in Figure 6.4.3 shows the relative contribution of each observation type to 
the objective function. Note that this measure depends on (1) the number of calibration 
points of the respective observation type, (2) the size of the residuals, and (3) the prior 
standard deviation assigned to the data. A large contribution may therefore indicate that (1) 
there are more data available of this type as compared to data of another type, that (2) the 
match to the respective data is relatively poor, or that (3) the accuracy of the data was over-
estimated. In this example, the objective function mainly consists of contributions from the 
pneumatic pressure residuals. We have already noted that the means and standard 
deviations of the residuals are acceptable and consistent with the expected quality of the 
data. However, the number of calibration points selected for matching the transient part of 
this inversion is somewhat arbitrary. The weight given to the pneumatic pressure data may 
be too large because we have selected 605 transient calibration points as compared to 36 
and 47 steady-state calibration points for the water potentials and saturation data, 
respectively. While this increased weight can be justified by the fact that there actually are 
much more pressure data than saturation and water potential data, there remains a 
subjective element through the choice of the number of calibration times selected for the 
transient simulation. The prior standard deviation may be appropriately adjusted to account 
for this effect. 
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7. PROBLEM 6:  VENTILATION EXPERIMENT 
 
7.1 Introduction 
 
A series of ventilation tests have been conducted at the Grimsel Rock Laboratory, 
Switzerland, a research facility operated by the Swiss National Cooperative for the 
Disposal of Radioactive Waste (Nagra). Ventilation tests were originally conceived to 
determine the macro-permeability of crystalline rocks by measuring the total inflow into 
drift sections with controlled ventilation. In these tests, ventilation is simply viewed as a 
convenient means to convey the incoming moisture to a measuring device. Accordingly, the 
standard interpretation of these tests is based on assuming that flow toward the drift is 
single-phase liquid. However, the estimated matrix permeabilities may be affected by 
partial drying of the drift wall leading to regions that are dominated by two-phase flow 
effects. In order to quantify the extent of the two-phase region and study its hydraulic 
properties, a joint project between the Institute of Terrestrial Ecology, ETH Zürich, and 
Nagra has been initiated. In-situ measurements of water potential, water content, 
temperature, and ambient air humidity were performed during a ventilation test starting 
November 26, 1991 [Gimmi et al., 1997]. 
A schematic of the ventilation experiment is shown in Figure 7.1.1. The experimental site is 
located in mildly deformed granodiorite that is considered homogeneous on the scale of 
interest. Two boreholes (BOVE 84.011 and BOVE 84.018) were drilled parallel to the drift. 
They are equipped with conventional pressure transducers to observe the hydraulic head. 
Thermocouple psychrometers (TP) were installed at six different depths (2, 5, 10, 20, 40, 
and 80 cm from the drift wall). They measure negative water potentials in the partially 
saturated region as a function of time. An estimate of the total inflow to large, sealed off 
sections of the drift is obtained from measurements of the moisture extracted from the 
circulated air in a cooling trap.  

 
Figure 7.1.1. Schematic of model domain and instrumentation. 
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A simple radial flow model was developed (file sam6). The computational region extends 
from the drift wall of radius 1.75 m to a presumably unaffected outer boundary at a distance 
of 6.75 m. A constant pressure of 0.37 MPa is prescribed at the outer boundary, reflecting 
the undisturbed pressure at drift level. The impact of gravity is neglected. The flow region 
is partitioned into 200 gridblocks with logarithmically increasing radial distances. Prior to 
ventilation, the system is run to steady state in order to obtain the initial pressure and 
saturation distribution. Starting ventilation, formation water evaporates at the surface due to 
the reduced relative humidity which is the main driving force for the desaturation of the 
formation. The transfer of moisture at the drift wall is a complicated mechanism that 
depends on factors such as relative humidity, temperature gradient, wind velocity in the 
drift, and surface roughness. Rather than explicitly model the moisture transfer across the 
drift surface, the reduced relative humidity is imposed as a boundary condition at the drift 
wall, giving rise to an equivalent capillary suction according to Kelvin's equation [Edlefsen 
and Anderson, 1943]: 

 
M
RThP equc ρ)ln(, =  (7.1.1) 

where ρ  and M  are the density and molecular weight of water, and R  is the universal gas 
constant. The relative humidity h  in the drift is 68% at a temperature T  of 12.5 ºC, 
invoking an equivalent capillary suction equcP ,  of -50.0 MPa. 
 
7.2 Discussion of Selected Modeling Issues 
In this section we discuss a few aspects of the forward and inverse model to demonstrate 
how a presumably non-standard observation type (cumulative evaporation rate) can be 
handled using standard iTOUGH2 features.  
First, the drift is modeled as a gridblock with single-phase gas conditions. A linear 
capillary pressure function is chosen for rock type DRIFT, providing the equivalent 
capillary suction equcP ,  of -50.0 MPa at 0.0=lS . The volume of the gridblock representing 
the drift is set large enough so that the water influx due to ventilation does not change the 
pressure and saturation conditions in the drift. However, the volume is small enough so that 
the water mass balance in the gridblock does not suffer from numerical cancellation effects. 
The rock type MATRI, associated with the formation, receives a negative value for the 
grain specific heat, thus excluding it from the global mass balance calculation. By doing so, 
the cumulative evaporation flux at the drift surface can be calculated as the change of the 
total amount of water mass in the gridblock representing the drift. Figure 7.2.1 shows the 
corresponding block in the iTOUGH2 input file sam4i. The observed average evaporation 
rate of 0.3 microliters [µL] per second and square meter of tunnel wall is converted to 
kilograms of water per meter of tunnel and a ventilation period of 80 days by specifying a 
multiplication factor of 

 ⎥
⎦

⎤
⎢
⎣

⎡ ⋅
=⋅⋅⋅⋅⋅= −

L
smtra

µ
πρπ

2
6 76400,8680100.175.122  (7.2.1) 
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  >> CHANGE of TOTAL MASS of WATER 
     >>> MODEL (i.e., DRIFT only because of negative SPHT for MATRI) 
         >>>> ANNOTATION: Average evaporation rate 
         >>>> FACTOR: 76.0  microliters/s/m^2 -- kg/(m tunnel)/(80 days) 
         >>>> DATA               [DAYS] 
              80.0 0.3 
         >>>> WINDOW: 79.9  80.1 [DAYS] 
         >>>> VARIANCE 0.04*2.5E-3 =: 1.0E-4 
         <<<< 
     <<< 
 

Figure 7.2.1. Excerpt from iTOUGH2 input file sam6i, showing block OBSERVATION 
for specifying an average evaporation rate. 
 
The calculated change of water mass in the drift corresponds now to the amount of water 
evaporated during the 80-day test period. In order to make sure that the calculated and 
observed water masses are compared only at the end of the simulation, a time window is 
specified around the last calibration point, which is at 80=t days. Because only one data 
point is given at 80=t days, a warning message is printed, indicating that the data point is 
automatically extrapolated to the starting time of the window, and the time of the last 
calibration point. The warning message could be avoided by providing two data points, one 
at a time smaller than 79.9 days, and another one with the same observed value at a time 
larger than 80.1 days. Finally, a variance must be selected to appropriately weigh the 
evaporation rate data against the matrix potential data. The assumed measurement error 
variance of 4123105.2 −−− ⋅⋅× msLµ  is somewhat arbitrarily multiplied by a factor of 

04.025/1 = . This makes the weight of the evaporation rate comparable with one set of 
water potential measurements, which comprises 25 calibration points in time. 
 
 
7.3 Minimization, Residual and Error Analysis 
In this section we assess the inverse modeling result by performing a detailed error analysis 
of the estimated parameter set. The three parameters estimated are the absolute 
permeability k , and the van Genuchten parameters n  and α/1 . 

First, we check whether the solution found by the minimization algorithm is likely to be a 
global minimum. In order to test this, we start minimization from different initial parameter 
sets. The different starting points can be specified (1) in the TOUGH2 input file, (2) using 
the fourth-level command >>>> GUESS in each block where the parameters are defined, 
or (3) using the second-level command >> GUESS (see iTOUGH2 input file sam4i). The 
five initial parameter sets, the best estimates, and the initial and the final values of the 
objective function are summarized in Table 7.3.1. The five inverse runs result in parameter 
sets that are almost identical. From this we conclude that the solution is likely to be unique 
within a parameter space bounded by rather extreme, albeit physically reasonable values, 
i.e., -21.0 < log(k) < -17.0, 2.0 < n < 5.0, and 5.7 < log(1/α ) < 6.4. 
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Table 7.3.1. Estimates Obtained Starting From Five Different  
Initial Parameter Sets 

 
Set 
No. 

 
Parameter 

 
Initial Guess 

Initial 
Objective 
Function 

Final 
Objective 
Function 

 
Best 

Estimate 

1 log (k [m2]) 
n [-] 
log(1/α  [Pa]) 

-17.00 
3.00 
6.00 

82,430 162.8 -18.52 
2.46 
6.24 

2 log (k [m2]) 
n [-] 
log(1/α  [Pa]) 

-18.00 
2.00 
5.70 

9136 163.2 -18.51 
2.49 
6.23 

3 log (k [m2]) 
n [-] 
log(1/α  [Pa]) 

-19.00 
2.50 
6.30 

479 162.6 -18.53 
2.50 
6.23 

4 log (k [m2]) 
n [-] 
log(1/α  [Pa]) 

-20.00 
5.00 
6.20 

2504 162.6 -18.52 
2.51 
6.23 

5 log (k [m2]) 
n [-] 
log(1/α  [Pa]) 

-21.00 
4.00 
6.40 

3761 163.1 -18.53 
2.52 
6.23 

 
In the remainder of this section we discuss some aspects of the residual and error analysis. 
First, we have to assess whether the match is satisfactory. If the goodness-of-fit criterion 
suggests that the model is an unlikely match to the data, then both the estimated parameters 
and the subsequent error analysis are meaningless. A visual inspection of the fit is always 
recommended. Figure 7.3.1 shows the comparison between the computed and measured 
water potentials. The actual field data are represented by filled squares. The calibration 
points that are linearly interpolated between the data are shown as open squares. The 
calculated solution is depicted as a solid line; the dashed line is the simulation result 
obtained when only water potentials are matched, i.e., neglecting pressure and evaporation 
rate measurements. The differences between the two solutions are discussed in Finsterle 
and Pruess [1995]. The match obtained seems reasonable. However, the residual plot 
printed to the iTOUGH2 output file sam6i.out and reproduced in Figure 7.3.2 reveals that 
certain data sets contain systematic rather than randomly distributed residuals. Data Set 
No. 4, corresponding to a depth of 20 cm, especially shows a trend in the residuals. 
Furthermore, water potentials of Data Set No. 1 are systematically overpredicted by the 
model, as evident by the predominantly negative residuals. 
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Figure 7.3.1. Comparison between computed and measured water potentials. 
 
 
 
 Residual Plot 
 ------------- 
 
       RESIDUAL     --------------------------------------------------------------- 
      0.140E+06     |                        3                                    |                  
      0.123E+06     |                                                             |                  
      0.106E+06     |                         3                                   |                  
      0.887E+05     |                                                             |                  
      0.718E+05     |                                             55              |                  
      0.548E+05     |                                  4           55     6       |                  
      0.379E+05     |         1       22               4 44       5 5    6666     |                  
      0.209E+05     |            1     2       3        4 4433 555   5            |                  
      0.398E+04     | 1                        3 33  3  3  34  2      5    666    |                  
     -0.130E+05     |-1- - - 1 - - - - - - - - -33333- 332 - 4 553 - - 556 - -66 -|                  
     -0.299E+05     | 1        11       2 22 2 23223223  3 2         3556     6   |                  
     -0.469E+05     |             1     22222222              4         6         |                  
     -0.638E+05     |    1 1                                   4       665        |                  
     -0.807E+05     |       1                                  444        5     6 |                  
     -0.977E+05     |     1  1               1    1               44      55 5    |                  
     -0.115E+06     | 1 1                                                   5    6|                  
     -0.132E+06     |     1        1 1                                            |                  
     -0.149E+06     |   1                                                         |                  
     -0.165E+06     |                                               44         5  |                  
     -0.182E+06     |  1                                               44         |                  
     -0.199E+06     |                  1   1                               4      |                  
     -0.216E+06     |               1    1                                        |                  
                    --------------------------------------------------------------- 
               -0.258E+07                                                     -0.119E+06 
                                            CAPILLARY PRES. [Pa]     
 

Figure 7.3.2. Excerpt from iTOUGH2 output file sam6i.out. Residual plot. 
  

File Name : wat_pot.eps
Creator :  TECPLOT
Pages : 1
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 Summary of Residual Analysis 
 ---------------------------- 
 Max weighted residual at observation    :            166 
 Max weighted residual                   :    -0.4729E+01 
 Max residual                            :    -0.4729E+05 
 Number of poorly controlled observations:              1 
 Number of large normalized residuals    :             10 
 Max normalized residual at observation  :            168 
 Max normalized residual                 :          12.92 
 Probable size of maximum error          :     0.5238E+02 
 

Figure 7.3.3. Excerpt from iTOUGH2 output file sam6i.out. Summary of residual analysis. 
 
The iTOUGH2 output file contains a list of calibration points with the observed value and 
the corresponding modeling result, the difference between the two (the residual), its weight 
(the inverse of the prior standard deviation), the squared weighted residual, which is the 
point's contribution to the objective function, the a posteriori standard deviation of the 
calculated system response (or prediction uncertainty), the local reliability (or measure of 
influence), and the normalized residual, which can be statistically tested for outliers 
assuming normality.  
A summary regarding large residuals is printed as reproduced in Figure 7.3.3. A total of 9 
residuals were identified that are likely to be outliers on a confidence level of 95%. Given 
the total amount of data available ( 165=m ) and the relatively small value of the largest 
normalized residual (3.62), it is not expected that these large residuals have a significant 
influence on the results. This hypothesis could be tested by eliminating the corresponding 
calibration points or by using one of the robust estimators. iTOUGH2 correctly identified 
the average evaporation rate as the only poorly controlled observation. 
Next, a statistical analysis of the distribution of the residuals is performed, individually for 
each data set and each observation type. Ideally, the mean of the residuals is zero, and the 
standard deviation should be consistent with the expected measurement error. In our case, 
the mean of the residuals for Data Set No. 1 is on the order of the standard deviation, 
signifying a rather large bias as previously observed on the residual plot. The distribution 
of all normalized residuals, however, exhibits a bias that is only 10% of the standard 
deviation. 
A linear regression analysis is conducted on a scatter plot in which the calculated pressures 
are plotted against the observed data (Figure 7.3.4). An intercept of zero and a slope of one 
are expected. The quantity )1( 2R− expresses the proportion of variance of the prediction 
that is not attributable to its linear regression on the observation; R is the correlation coeffi-
cient. Again, Data Set No. 1, which corresponds to the capillary pressure computed for grid 
block RR 19, exhibits a relatively large intercept, indicating a systematic overprediction 
of the data. However, only a minor trend seems to be present compared with the one of 
Data Set No. 4 (grid block RR 76) where the slope significantly deviates from one, 
indicating that the higher, early-time data are underpredicted and the lower, late-time data 
are overpredicted by the model (see Figure 7.3.1). 
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 Linear Regression Analysis Calculated Vs. Observed 
 -------------------------------------------------- 
 
 ================================================================   
 DATASET               DATAPOINTS     INTERCEPT       SLOPE  CORR 
 ---------------------------------------------------------------- 
 PC(LIQUI) RR 19   [Pa]        27    -0.273E+06   0.910E+00  1.00 
 PC(LIQUI) RR 39   [Pa]        27    -0.594E+05   0.969E+00  1.00 
 PC(LIQUI) RR 53   [Pa]        27    -0.116E+06   0.895E+00  1.00 
 PC(LIQUI) RR 76   [Pa]        27    -0.339E+06   0.654E+00  1.00 
 PC(LIQUI) RR1 1   [Pa]        27    -0.112E+06   0.815E+00  1.00 
 PC(LIQUI) RR128   [Pa]        27     0.684E+05   0.116E+01  1.00 
 ================================================================ 
 

Figure 7.3.4. Excerpt from iTOUGH2 output file sam6i.out with linear regression analysis 
of plot of calculated versus observed system response. 
 
 
Note that the linear regression analysis does not properly account for differences in 
measurement quality within a data set. Furthermore, the smaller values have a higher influ-
ence on the intercept estimate, and small and large values determine the slope more 
strongly than intermediate values. Consequently, the results of this analysis should be 
interpreted with care. 
 
The estimated error variance 2

0s  is an overall goodness-of-fit criterion. If its value is close 
to one, then the match is—on average—consistent with the expected one, which was 
previously expressed through the prior covariance matrix zzC . A value slightly less than 
one was achieved in this sample problem, indicating that the assumption about the 
measurement errors (i.e., 10% of the water potential measurement) were too pessimistic. 
This is taken into account in the subsequent error analysis by using 2

0s  as a scaling factor 
for the covariance matrices. 
 
An uncertainty measure of the estimated parameter values is usually obtained under the 
assumption of normality and linearity. The normality assumption is based on the fact that 
the distribution of a sum of random values always tends to normal if the sample size is 
sufficiently large. The linearity assumption postulates that the model output can be approxi-
mated by a linear function of the parameters within the area covered by the confidence 
region. Both assumptions have to be questioned because the sample size is usually small 
and the two-phase flow model is highly nonlinear. A linear approximation of estimation 
uncertainty is given by the covariance matrix ppC : 
 
 ( ) 112

0
−−= JCJC zz

T
pp s  (7.3.1) 
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 > COMPUTATION 
 
   >> STOPPING criteria 
      >>> number of ITERATIONS     : 6 
      >>> maximum scaled STEP size : 0.5 
      >>> ignore WARNING messages 
      <<< 
     
   >> JACOBIAN matrix 
      >>> PERTURB parameters by                    : 1 % 
      >>> use FORWARD finite differences for first : 5 iterations 
          then switch to centered finite difference quotient 
      <<< 
  
   >> ERROR analysis 
      >>> risk ALPHA is                 :  5 % 
      >>> check LINEARITY assumption on : 95 % confidence level 
      <<< 
 
   >> OUTPUT 
      >>> time units for output is DAYS 
      >>> write plot file with CHARACTERISTIC curves 
      <<< 
   << 
 < 
 

Figure 7.3.5. Excerpt from iTOUGH2 input file sam6i, block COMPUTATION. 
 
 
The Jacobian J  in Eq. (7.3.1) contains the sensitivity coefficients jiij pzJ ∂∂= , evaluated 
prior to performing the last minimization step. While forward finite differences are used 
during the first 4 iterations, centered finite differences are calculated for the last two 
iterations to increase the accuracy of J . The corresponding iTOUGH2 command is shown 
in block >> JACOBIAN of Figure 7.3.5. The parameters are perturbed by 1% for 
calculating the derivatives numerically. 
The covariance and correlation matrices from the linear error analysis are shown in Table 
7.3.2. The diagonal elements of matrix ppC  are the variances from the marginal probability 
density function. Since the parameters are correlated, the uncertainty of one parameter 
affects the uncertainty of the other parameters. The conditional standard deviations *pσ , 
on the other hand, measure the uncertainty of a parameter assuming that all the other 
parameters are either exactly known or uncorrelated. The conditional standard deviations 
are shown in Table 7.3.3. They are always smaller than the joint standard deviations pσ . 
Therefore, the ratio 

  
k

k

p

p
k σ

σ
χ

*
=  (7.3.2) 

can be regarded as a measure of overall parameter correlation, i.e., of how independently 
the k -th parameter can be estimated. Small values of kχ indicate that the uncertainty 

kp
σ

of a parameter is mainly determined by its correlation to other uncertain parameters. A kχ -
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value close to one indicates an independent estimate. An experiment should be designed 
towards kχ -values close to one, as weak correlations result in lower estimation 
uncertainties. 
Next, we discuss correlation coefficients calculated from the covariance matrix ppC .  
Correlations among parameters can be viewed as the combined impact of parameter 
changes on the system behavior. For example, if two parameters are negatively correlated, 
a similar system response is obtained by concurrently increasing one and decreasing the 
other parameter. Even though certain pairs of parameters may exhibit preferential 
correlation structures, correlations are not invariable for a given parameter combination. 
They depend on the data used for the inversion and also on the number of simultaneously 
estimated parameters, since indirect correlations may overwhelm the direct correlations.  
 
 
Table 7.3.2. Covariance (Diagonal and Lower Triangle) and Correlation (Upper 
Triangle) Matrices from Linear Error Analysis 

 log (k [m2]) n [-] log(1/α  [Pa]) 
log (k [m2]) 7.77 × 10-4 -0.46 -0.81 
n [-] -4.52 × 10-4 1.25 × 10-3 0.08 
log(1/α  [Pa]) -1.25 × 10-4 1.63 × 10-5 3.05 × 10-5 
 
 
Table 7.3.3. Marginal and Conditional Standard Deviations 

 Standard Deviation  
 Marginal pσ  Conditional *pσ  pp σσχ *=  
log (k [m2]) 2.79 × 10-2 1.22 × 10-2 0.44 
n [-] 3.53 × 10-2 2.61 × 10-2 0.74 
log(1/α  [Pa]) 5.52 × 10-3 2.71 × 10-3 0.49 
 
 
Table 7.3.4. Matrix of Direct (Lower Triangle) and Total (Upper Triangle) Correlation 
Coefficients 

 log (k [m2]) n [-] log(1/α  [Pa]) 
log (k [m2]) 1.00 -0.46 -0.81 
n [-] -0.67 1.00 0.08 
log(1/α  [Pa]) -0.87 -0.55 1.00 
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Table 7.3.5. Eigenanalysis of Covariance Matrix 

 Scaled Eigenvector Components 
Eigenvalue Eigenvalue log (k [m2]) n [-] log(1/α  [Pa]) 
5.10 × 10-4 1.76 × 10-4 0.83 -0.52 0.19 
1.81 × 10-3 2.01 × 10-2 0.52 0.85 0.06 
7.42 × 10-6 2.06 × 10-5 -0.19 0.05 0.98 

 

The direct correlation coefficients shown in the lower triangle of Table 7.3.4 can be inter-
preted more easily based on a physical understanding of the system. For example, since 
decreasing the value for n reduces the liquid relative permeability, the absolute 
permeability has to be increased in order to maintain a certain water flow rate.  This 
explains why n and log(k) are negatively correlated. Similarly, the water potentials 
decrease with higher air entry pressure and higher permeability, leading to a negative 
correlation between these two parameters. Recall, however, that the correlation coefficients 
shown in the upper triangle of Tables 7.3.4 and 7.3.2 are the ones describing the statistical 
correlations among the parameters that are concurrently estimated in an inversion. These 
correlation coefficients are difficult to assess physically because they include contributions 
from indirect correlations. Indirect correlations have been previously described (see 
discussion of Table 3.4.2). 

An eigenanalysis of the covariance matrix ppC  is performed (see Table 7.3.5). Parameter 
combinations along the eigenvector with the largest eigenvalue lead to a match similar to 
the best fit, whereas a perturbation of similar size from the best-estimate parameter set 
along the shortest eigenvector yields a significantly poorer agreement with the data. This 
means that the inverse modeling result is well-constrained in the direction of the shortest 
eigenvector. Since the parameters considered in the analysis may have different units and 
magnitudes, the eigenvalues and conditioning number are scaled by the estimated 
parameter value to allow comparison. 
The shape and convexity of the objective function near the minimum determines the 
accuracy of the estimates. The covariance matrix ppC  approximates the actual surface of 
the objective function at its minimum by a tangent hyperellipsoid under the assumption of 
normality and linearity. If the model is nonlinear, the coverage of the confidence region by 
the linear approximation may be very poor with respect to both its size and its shape. 
iTOUGH2 offers a correction procedure based on the assumption that the shape of the 
confidence region is close to ellipsoidal, and that the orientation of the hyperellipsoid in the 
n -dimensional parameter space is accurately obtained from the linear error analysis. Then, 
by adjusting only the size of the hyperellipsoid, we can better approximate the confidence 
region without losing the advantage of producing easily understandable results that are also 
simple to report. The basic idea of the procedure is to compare the actual likelihood 
function with the results from the linear approximation at discrete points in the parameter 
space. These test points are preferably located along the main axis of the hyperellipsoid, 
that is: 
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 iinmni aFn upp ⋅⋅⋅±= −−± α1,,ˆ~  ),,1( ni …=            (7.3.3) 

Here, i±p~  are two test parameter sets on the i -th axis, the direction of which is given by the 
eigenvector iu  of the covariance matrix ppC . Note that the distance from the optimal 
parameter set p̂ is selected as a multiple of the corresponding eigenvalue 2

ia  and the 
quantile of the F -distribution. This means that the correction is tailored to approximate the 
confidence region on a certain confidence level α−1 . The eigenvalues 2

ia  representing the 
length of the semiaxis are now corrected as follows: 
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Here, )(pS  is the value of the objective function obtained with parameter vector p . 
Finally, the new covariance matrix is back-calculated from the eigenvectors iu and the 
updated eigenvalues 

2'ia . The correction procedure requires n2  additional solutions of the 
forward problem and is thus relatively inexpensive. While the resulting confidence region 
is ellipsoidal by definition, the differences between )~( iS +p  and )~( iS −p  provide, as a 
byproduct of the correction procedure, some insight into the asymmetry of the true 
confidence region. 
The iTOUGH2 command line invoking the correction procedure can be found in Figure 
7.3.5. Figure 7.3.6 shows the iTOUGH2 output from the correction along the first eigen-
vector. For 3=n  parameters, 165=m observations, and 05.0=α , the value of the 
F -quantile is about 2.6. Perturbing the best estimate parameter set in both directions along 
the first eigenvector (see Table 7.3.5) yields the two test points i+p~  and i−p~ . The respective 
values of the objective function, )~( iS +p  and )~( iS −p , are evaluated. They compare well with 
each other as well as with the value from the linear approximation, which is calculated to 
be [Donaldson and Schnabel, 1987] 

 α−−⋅⋅+= 1,,
2
0)ˆ()~( nmnlin FnsSS pp  (7.3.6) 

From this close agreement it can be concluded that neglecting non-linearity effects in the 
error analysis is justified in this case. Since the average of )~( iS +p  and )~( iS −p  is greater 
than )~( linS p , the eigenvalue is slightly reduced to yield an elliptical region that better 
represents the true confidence region. The same procedure is applied to all eigenvectors, 
and the error analysis is repeated for the corrected covariance matrix. 
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 Check Linearity Assumption of Error Analysis 
 -------------------------------------------- 
 
 Correction along semiaxis No. 1 
 
 Eigenvalue corresponding to parameter      : Permeability    
 Increment of standard deviation k=sqrt(n*F):    0.279149E+01 
 
 Step along semiaxis No. 1 leads to new parameter sets: 
        best estimate                step    parameter set #1    parameter set #2 
      -0.18516470E+02 +/-  0.52923192E-01     -0.18463547E+02     -0.18569393E+02 
       0.25021422E+01 +/-  0.33286734E-01      0.25354289E+01      0.24688555E+01 
       0.62289149E+01 +/- -0.12325560E-01      0.62165893E+01      0.62412404E+01 
  
 Objective function at minimum, Smin        :    0.162766E+03 
 Linear approximation = Smin + s0^2*k^2     :    0.170595E+03 
 O.f. at parameter set #1   (numerically)   :    0.172287E+03 
 O.f. at parameter set #2   (numerically)   :    0.169663E+03 
 Original eigenvalue                        :    0.521123E-03 
 Corrected eigenvalue                       :    0.510017E-03 
 
 
 Correction along semiaxis No. 2 
 
 Eigenvalue corresponding to parameter      : vG n            
 Increment of standard deviation k=sqrt(n*F):    0.279149E+01 
 
 Step along semiaxis No. 2 leads to new parameter sets: 
        best estimate                step    parameter set #1    parameter set #2 
      -0.18516470E+02 +/- -0.56991283E-01     -0.18573461E+02     -0.18459479E+02 
       0.25021422E+01 +/-  0.92744929E-01      0.25948871E+01      0.24093973E+01 
       0.62289149E+01 +/-  0.57616155E-02      0.62346765E+01      0.62231532E+01 
  
 Objective function at minimum, Smin        :    0.162766E+03 
 Linear approximation = Smin + s0^2*k^2     :    0.170595E+03 
 O.f. at parameter set #1   (numerically)   :    0.167345E+03 
 O.f. at parameter set #2   (numerically)   :    0.174527E+03 
 Original eigenvalue                        :    0.152493E-02 
 Corrected eigenvalue                       :    0.181115E-02 
 
 
 Correction along semiaxis No. 3 
 
 Eigenvalue corresponding to parameter      : vG 1/alpha      
 Increment of standard deviation k=sqrt(n*F):    0.279149E+01 
 
 Step along semiaxis No. 3 leads to new parameter sets: 
        best estimate                step    parameter set #1    parameter set #2 
      -0.18516470E+02 +/-  0.14224595E-02     -0.18515047E+02     -0.18517892E+02 
       0.25021422E+01 +/-  0.42359529E-03      0.25025658E+01      0.25017186E+01 
       0.62289149E+01 +/-  0.72516950E-02      0.62361665E+01      0.62216632E+01 
  
 Objective function at minimum, Smin        :    0.162766E+03 
 Linear approximation = Smin + s0^2*k^2     :    0.170595E+03 
 O.f. at parameter set #1   (numerically)   :    0.168962E+03 
 O.f. at parameter set #2   (numerically)   :    0.172007E+03 
 Original eigenvalue                        :    0.703121E-05 
 Corrected eigenvalue                       :    0.742082E-05 
 
 
 *****  MESSAGE  ***** 
 * The error analysis is now repeated for the corrected covariance matrix. 
 *****  MESSAGE  ***** 
 

Figure 7.3.6. Excerpt from iTOUGH2 output file sam6i.out showing correction procedure 
along first eigenvector of parameter covariance matrix. 
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8. PROBLEM 7:  NUMERICAL DISPERSION 
 
8.1 Capillary Diffusion 
 
In Problem 7, iTOUGH2 is used to examine numerical dispersion effects. This investigation 
can be considered to be a verification study for both TOUGH2 and iTOUGH2. Furthermore, 
it demonstrates that numerical dispersion can be partly compensated for by estimating 
model-related parameters of the capillary pressure function. 
Downward flow of liquid in a partially saturated porous medium is calculated numerically 
and compared with an analytical solution in order to examine possible errors as a result of 
finite space discretization. The governing equation for unsaturated liquid flow can be 
written in the form of a convection-diffusion equation for saturation, termed Fokker-Planck 
equation [Philip, 1969], as follows: 

 ( )lcap
ll Sdiv
z
Sv

t
S

∇+
∂

∂
=

∂

∂ D  (8.1.1) 

where lS  is liquid saturation, t  is time, z  is a positive downward space coordinate, and 
capD  is a tensor expressing capillary effects. The velocity v  for a vertical, gravity-driven 

propagation of saturation disturbances in the absence of capillary effects can be given by 
[Pruess, 1996]: 

 
l
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l

l

dS
dkgkv ⋅

⋅⋅
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φµ
ρ  (8.1.2) 

Here, k  is absolute permeability, rlk  is liquid relative permeability as a function of liquid 
saturation lS , φ  is porosity, lρ   and lµ  are density and viscosity of the liquid phase, 
respectively, and g  is gravitational acceleration. A diffusion coefficient expressing 
capillary effects can be written as follows [Pruess, 1996]: 
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⋅

⋅
=

µφ
 (8.1.3) 

It is seen that in order to obtain a constant velocity and constant diffusivity we must have 

 lrl Sck ⋅=  (8.1.4) 

 )ln( rlcap kAP ⋅=  (8.1.5) 

where A  is a coefficient that scales the capillary pressure. Physical constraints require the 
constant c  in Equation (8.1.4) to be one. Equations (8.1.2) and (8.1.4) yield the advective 
velocity 

 
l

l gkv
µφ
ρ
⋅

⋅⋅
=  (8.1.6) 

and capillary diffusivity is derived from Eqs. (8.1.3), (8.1.4), and (8.1.5) to be 
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l

cap
kAD
µφ ⋅
⋅

=  (8.1.7) 

For the characteristic curves given by (8.1.4) and (8.1.5), the coefficients in (8.1.1) are 
constant which allows applying standard analytical solutions to the convection-diffusion 
equation for miscible displacement [Scheidegger, 1954]: 
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 (8.1.8) 

with  

 ( )∫
∞

∞−

−= dzStzStM lrl ),()(  (8.1.9) 

where lrS  is the residual liquid saturation. Boundary conditions for the solution of (8.1.8) 
correspond to lrl SS →  for ±∞→z , and the initial disturbance is given by a δ-function. 
Gravity-driven downflow of liquid under capillary forces is modeled using TOUGH2 in 
combination with EOS9. A uniform grid spacing of 01.0=h  m is chosen. The permeability 
is 1310−=k m2, porosity 1.0=φ , residual liquid saturation 0=lrS , and the parameter A  in 
(8.1.5) is 1000 Pa. The system is initially dry, except for one gridblock initialized with a 
liquid saturation of 9999.0)0( ==tSl . The TOUGH2 input file is shown in Figure 8.1.1. 
Figure 8.1.2 shows liquid saturation as a function of time at a distance of 0.1, 0.2, 0.3, and 
0.5 m from the injection point. The TOUGH2 results (solid lines) are in very good agree-
ment with the analytical solution (symbols). Note that no special effort has been made to 
accurately model the input δ-function, explaining the somewhat larger spreading of the 
saturation pulse as it moves through the system. This simulation proves that the TOUGH2 
solution is accurate for sufficiently fine space and time discretization. 
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sam7: Examines numerical diffusion 
ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
MATRI    2                 0.1                    1.000E-13 
 
    1      0.000E+00           1.000E+00 
    8      1.000E+02 
 
PARAM----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 8-11200    1200100000100000000400000000 
           1.080E+05 1.000E-01 1.000E+02               9.810 
 1.000E-06 
            0.000001 
MESHM----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
XYZ 
 
NX       1 1.000E+00 
NY       1 1.000E+00 
NZ     200 0.010E+00 
 
 
START----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
INCON----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
BF1 1 
              0.9999 
 
ENDCY----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 

Figure 8.1.1. TOUGH2 input file sam7. 
 

 
Figure 8.1.2. Verification of TOUGH2 solution. Only minor discretization effects are seen 
for grid spacing 01.0=h m, maximum time step 100max =Δt seconds, and 1000=A Pa. 

File Name : sam8.A1000.eps
Creator :  TECPLOT
Pages : 1
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8.2 Compensating Numerical Dispersion 
 
Space discretization gives rise to artificial numerical dispersion effects. An effective diffu-
sivity due to space discretization is given by [Pruess, 1991b]: 

 
l

l
grid

gkhD
µφ
ρ

⋅

⋅⋅⋅
=

)2/(  (8.2.1) 

The total diffusivity in the simulation is therefore a sum of physical (capillary) and 
numerical (grid) diffusivities, gridcaptot DDD += . From Equations (8.1.7) and (8.2.1) we 
obtain: 

 ghAAAA lgridtot ⋅⋅+=+= ρ)2/(  (8.2.2) 

In our case, the second term on the right hand side, reflecting an effective capillary strength 
due to space discretization, is 49 Pa. Space discretization effects can be studied either by 
actually varying the side length of the gridblocks or by changing parameter A  in (8.2.2). 
The smaller the capillary strength A , the more totA  is influenced by space discretization 
effects. 
Let us assume that the true value for A  is known to be 100 Pa. If this value were used in a 
simulation of a liquid pulse propagating through an unsaturated porous medium, the peak 
liquid saturation would be underpredicted at any point z  because numerical diffusion leads 
to additional spreading of the saturation pulse. If one estimates parameter A  based on 
saturation measurements, an effective value for A  will be obtained that partly compensates 
for discretization errors. 
To demonstrate this, we perform an inversion where the data to be matched are obtained 
from the analytical solution (Equation 8.1.8). While the analytical solution could also be 
calculated beforehand and prescribed as a list of discrete data points, internal calculation is 
more convenient and flexible. A user-specified function providing data points is 
programmed into subroutine USERDATA (Figure 8.2.1). Note that all values needed to 
evaluate (8.1.8) are directly taken from the input files and the secondary variables 
calculated by TOUGH2. The iTOUGH2 input file is shown in Figure 8.2.2. Parameter No. 1 
of the capillary pressure function is estimated based on analytically calculated saturation 
data. The annotation “ANALYT. Z=x.xxx” is used to identify the data set and to 
transfer the z -coordinate to subroutine USERDATA.  
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************************************************************************ 
      SUBROUTINE USERDATA(IDF,TIME,ANNO,F) 
************************************************************************ 
* User specified function to represent observed data                   * 
* IDF : data set identifier (input)                                    * 
* TIME: time at which data are to be provided (input)                  * 
* ANNO: annotation (input)                                             * 
* F   : value of observed data at time TIME (output)                   * 
************************************************************************ 
C 
C$$$$$$$$$ PARAMETERS FOR SPECIFYING THE MAXIMUM PROBLEM SIZE $$$$$$$$$$ 
      INCLUDE 'maxsize.inc' 
C 
C$$$$$$$$$ COMMON BLOCKS FOR SIMULATION PARAMETERS $$$$$$$$$$$$$$$$$$$$$ 
      INCLUDE 'param.inc' 
C 
C$$$$$$$$$ COMMON BLOCKS FOR ROCK PROPERTIES $$$$$$$$$$$$$$$$$$$$$$$$$$$ 
      INCLUDE 'rock.inc' 
C 
C$$$$$$$$$ COMMON BLOCK FOR SECONDARY VARIABLES $$$$$$$$$$$$$$$$$$$$$$$$ 
      INCLUDE 'second.inc' 
C 
C$$$$$$$$$ COMMON BLOCKS FOR TOTAL MASS AND VOLUMES $$$$$$$$$$$$$$$$$$$$ 
      INCLUDE 'rmasvol.inc' 
C 
C$$$$$$$$$ COMMON BLOCKS FOR ELEMENTS $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
      INCLUDE 'elements.inc' 
 
      CHARACTER ANNO*(*) 
 
      SAVE ICALL,A 
 
      DATA ICALL/0/ 
 
      ICALL=ICALL+1 
      IF (ICALL.EQ.1) WRITE(11,7999) 
 7999 FORMAT(6X,'USERDATA 2.5       2 SEPTEMBER 1996',6X, 
     &       '#125: USER SPECIFIED DATA DESCRIPTION') 
 
      F=0.0D0 
C --- For sample problem 7, analytical solution 1D-pulse 
      IF (ICALL.EQ.1) A=CP(1,1) 
      IF (ANNO(1:10).EQ.'ANALYT. Z=') THEN 
         READ(ANNO(11:15),'(F5.3)',IOSTAT=IOS) Z 
         V=PER(3,1)*PAR(4)*GF/POR(1)/PAR(3) 
         DIFF=A*PER(3,1)/POR(1)/PAR(3) 
         XM=XPVOLU0(2)/POR(1) 
         F=XM/(DSQRT(4.0D0*3.1416D0*DIFF*TIME))* 
     &     DEXP(-(Z-V*TIME)**2/(4.0D0*DIFF*TIME)) 
      ENDIF 
      END 
C --- END of USERDATA 
 

Figure 8.2.1. Subroutine USERDATA. Liquid saturation is calculated analytically as a 
function of space and time, and provided as the data points to be matched. 
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--- Sample Problem 7 --- Sample Problem 7 --- Sample Problem 7 
 
  > PARAMETER 
 
    >> parameter 1 of CAPILLARY pressure function 
       >>> ROCK type         : MATRI 
           >>>> ANNOTATION   : A in A*ln(krl) 
           >>>> PARAMETER CP(: 1 ) 
           >>>> VALUE 
           <<<< 
       <<< 
    << 
 
  > OBSERVATIONS 
 
    >> Calibrate at: 50 EQUALLY spaced TIMEs between [HOUR] 
       0.5 25.0 
 
    >> LIQUID SATURATION 
       >>> GRID BLOCK      : BP1_1 
           >>>> ANNOTATION : ANALYT. Z=0.100 
           >>>> DEVIATION  : 0.002 
           >>>> analytical solution given by USER-specified function 
           <<<< 
 
       >>> GRID BLOCK      : BZ1_1 
           >>>> ANNOTATION : ANALYT. Z=0.200 
           >>>> DEVIATION  : 0.002 
           >>>> analytical solution given by USER-specified function 
           <<<< 
 
       >>> GRID BLOCK      : CA1_1 
           >>>> ANNOTATION : ANALYT. Z=0.300 
           >>>> DEVIATION  : 0.002 
           >>>> analytical solution given by USER-specified function 
           <<<< 
 
       >>> GRID BLOCK      : CU1_1 
           >>>> ANNOTATION : ANALYT. Z=0.500 
           >>>> DEVIATION  : 0.002 
           >>>> analytical solution given by USER-specified function 
           <<<< 
       <<< 
    << 
 
 
  > COMPUTATION 
 
    >> STOP after 
       >>> : 5 ITERATIONS 
       <<< 
    << 
  < 
 

Figure 8.2.2. iTOUGH2 input file sam7i. 
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The dashed lines in Figure 8.2.3 show the simulated saturations for 100=A Pa, which gives 
rise to substantial space discretization effects as high as 50% according to (8.2.2). The solid 
lines represent the fit to the analytical solution. The optimum, model-related value for A  is 
estimated to be 48 Pa, i.e., discretization effects are compensated for by reducing parameter 
A  from 100 Pa to 48 Pa. The estimate of 48 Pa is in good agreement with the theoretical 
result from Equation (8.2.2), i.e., 5149100 =−=−= gridtot AAA Pa. The difference of 3 Pa 
can be attributed to time-discretization effects and inaccuracy in modeling the initial 
saturation pulse. 
This sample problem provides verification for TOUGH2 (see Figure 8.1.1), and iTOUGH2 
(the estimated value is consistent with the one calculated by Equation (8.2.2)). In addition, 
it demonstrates that discretization errors can be partly compensated for by using a model-
related parameter—estimated by inverse modeling—rather than the true value. This last 
remark is only valid, of course, if the same or similar discretization is used for both the 
inversion and the subsequent prediction run. Moreover, discretization errors are less 
accurately compensated for if the characteristic curves deviate from the model (see 
Equations (8.1.4) and (8.1.5)) used in this study. 
 

 
Figure 8.2.3. Discretization effects are compensated for by reducing parameter A  from 
100 Pa to 48 Pa. 
 
 
 

File Name : sam8.A48.eps
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Pages : 1
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9. CONCLUDING REMARKS 
 
The sample problems discussed in this report illustrate some of the concepts of inverse 
modeling and their application using the iTOUGH2 code. The main purpose of this report is 
to serve as a tutorial for potential iTOUGH2 users. However, only limited information 
regarding the necessary analysis and preprocessing of data, the development of a 
conceptual model and the interpretation of inverse modeling results were given. Inverse 
modeling is only one, albeit important step in model identification. The parameters 
estimated by inverse modeling must be critically reviewed. The residual and uncertainty 
analyses performed by iTOUGH2 provide some guidance, preventing the user from 
reaching too optimistic conclusions regarding the reliability of the results. 
The sample problems presented here have been run on a variety of Unix workstations and 
on a PC. The numbers reported here are the results obtained on a SUN ULTRA1 
workstation under the Solaris operating system. Different results will be obtained if using a 
different computer system, i.e., the calculations are often sensitive to small differences in 
the computer’s arithmetic or compiler options. Small round-off errors within a TOUGH2 
forward simulation affect the Jacobian matrix and thus the parameter updates, which may 
eventually lead to a diversion of the solution path taken. Note, however, that this sign of 
numerical instability reflects the instability of the inverse problem itself. For example, the 
ill-posed inverse problem of Problem 2.1 suffers from numerical instability, i.e., the 
estimates are sensitive to round-off errors, whereas the well-posed inversion of Problem 2.2 
leads to identical results on all machines tested. Due to similar reasons, Problem 3 may lead 
to different estimates of those parameters that are insensitive and strongly correlated, 
whereas stable results are obtained for the well constraint parameters. It is important to note 
that even the unstable cases do not lead to an improper conclusion since the error analysis 
clearly indicates an uncertain estimate of the unstable parameters. The need to report 
estimation errors along with the best-estimate parameter set is obvious. 
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B 
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confidence  
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 direct/indirect, 38, 73 
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 estimated parameters, 31, 70, 73 
 measurement errors, 33, 70 
 
D 
dispersion, numerical, 79 
 
E 
error, systematic, 33, 35, 57, 67 
error variance 
 a posteriori, 13, 38, 70 
 a priori, 13 
eigenanalysis, 31, 73 
equation-of-state, 1 
 
F 
Fisher 
 information matrix, 32 
forward problem, 5 
 FORWARD, 5 
FOSM, 16, 42 
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G 
Geysers, 21 
Grimsel, 64 
goodness-of-fit, 38, 70 
GUESS, 66 
 
H 
HEADER, 11, 26 
 
I 
initial conditions 
 estimating, 8, 12, 35 
 specifying, 22, 54 
inverse problem 
 ill-posed, 24 
 well-posed, 32 
inversion 
 simultaneous, 32 
invdir, 5 
itough2, 5, 13, 55 
 
J 
Jacobian, 28, 71 
 
K 
Kashyap, 38 
KDATA, 6 
kit, 14 
Klinkenberg effect, 21 
 
L 
log-normal distribution,16 
 
M 
match 
 good, 32 
 perfect, 14 
 reasonable, 33 
MINC, 40 
minimization algorithm, 49 
minimum, 55, 66 
Monte Carlo, 16 
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N 
NO DATA, 6 
non-linearity 
 error analysis, 73 
 minimization algorithm, 50 
 sensitivity analysis, 8, 30, 41 
 uncertainty propagation, 16, 19 
 
non-unique, 24, 30, 49, 66 
normal distribution, 16, 70 
 
O 
outlier, 69 
output 
 file, 5, 14 
overparameterization, 35 
 
P 
parameter 
 estimation, 11 
 range, 11, 18 
 selection (automatic), 40 
 variation, 28 
PERTURB, 18, 59 
plot 
 file, 14 
 format, 6, 13 
 residual, 67 
primary variable, 8, 55 
prior information, 28, 53, 57 
prista, 13 
 
Q 
quantile, 74 
 
R 
regression analysis, 69 
residual, 33, 63, 69 
RESTART, 16, 48 
 
S 
seed number, 18 
SELECTION, 41 
sensitivity 
 analysis, 8, 30 

 coefficients (scaled), 28 
 measures, 10, 42, 43, 62 
SET, 28 
shut-in, 16 
standard deviation 
 conditional, 32, 71 
 marginal, 32, 71 
 parameter, 16, 28 
 observation, 13, 28, 39, 66 
 residual, 33, 43, 63 
steady state, 55 
 
T 
tough2, 5 
 
U 
uncertainty 
 estimated parameter, 30, 38 
 prediction, 16, 43, 69 
unique (see non-unique) 
USERBC, 55 
USERDATA, 79 
 
V 
van Genuchten, 47 
VARIATION, 8, 28, 53 
ventilation, 64 
 
W 
warning messages, 57, 66 
 ignore, 11, 13, 28 
 message files, 5 
WINDOW, 58, 66 
 
X 
X(1), 55 
 
Y 
Yucca Mountain, 83 
 
Z 
Z=x.xxx, 79 


